To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The partition monoid is a salient natural example of a *-regular semigroup. We find a Galois connection between elements of the partition monoid and binary relations, and use it to show that the partition monoid contains copies of the semigroup of transformations and the symmetric and dual-symmetric inverse semigroups on the underlying set. We characterize the divisibility preorders and the natural order on the (straight) partition monoid, using certain graphical structures associated with each element. This gives a simpler characterization of Green’s relations. We also derive a new interpretation of the natural order on the transformation semigroup. The results are also used to describe the ideal lattices of the straight and twisted partition monoids and the Brauer monoid.
In this paper we consider a generalized coupon collection problem in which a customer repeatedly buys a random number of distinct coupons in order to gather a large number n of available coupons. We address the following question: How many different coupons are collected after k = kn draws, as n → ∞? We identify three phases of kn: the sublinear, the linear, and the superlinear. In the growing sublinear phase we see o(n) different coupons, and, with true randomness in the number of purchases, under the appropriate centering and scaling, a Gaussian distribution is obtained across the entire phase. However, if the number of purchases is fixed, a degeneracy arises and normality holds only at the higher end of this phase. If the number of purchases have a fixed range, the small number of different coupons collected in the sublinear phase is upgraded to a number in need of centering and scaling to become normally distributed in the linear phase with a different normal distribution of the type that appears in the usual central limit theorems. The Gaussian results are obtained via martingale theory. We say a few words in passing about the high probability of collecting nearly all the coupons in the superlinear phase. It is our aim to present the results in a way that explores the critical transition at the ‘seam line’ between different Gaussian phases, and between these phases and other nonnormal phases.
In this paper, we present a combinatorial proof for an identity involving the triangular numbers. The proof resembles Franklin’s proof of Euler’s pentagonal number theorem.
The Ehrenfest urn is a model for the diffusion of gases between two chambers. Classic research deals with this system as a Markovian model with a fixed number of balls, and derives the steady-state behavior as a binomial distribution (which can be approximated by a normal distribution). We study the gradual change for an urn containing n (a very large number) balls from the initial condition to the steady state. We look at the status of the urn after kn draws. We identify three phases of kn: the growing sublinear, the linear, and the superlinear. In the growing sublinear phase the amount of gas in each chamber is normally distributed, with parameters that are influenced by the initial conditions. In the linear phase a different normal distribution applies, in which the influence of the initial conditions is attenuated. The steady state is not a good approximation until a certain superlinear amount of time has elapsed. At the superlinear stage the mix is nearly perfect, with a nearly perfect symmetrical normal distribution in which the effect of the initial conditions is completely washed away. We give interpretations for how the results in different phases conjoin at the ‘seam lines’. In fact, these Gaussian phases are all manifestations of one master theorem. The results are obtained via martingale theory.
In this paper, compositions of a natural number are studied. The number of restricted compositions is given in a closed form, and some applications are presented.
We prove that there are permutation classes (hereditary properties of permutations) of every growth rate (Stanley–Wilf limit) at least λ≈2.48187, the unique real root of x5−2x4−2x2−2x−1, thereby establishing a conjecture of Albert and Linton.
The probability that two randomly selected phylogenetic trees of the same size are isomorphic is found to be asymptotic to a decreasing exponential modulated by a polynomial factor. The number of symmetrical nodes in a random phylogenetic tree of large size obeys a limiting Gaussian distribution, in the sense of both central and local limits. The probability that two random phylogenetic trees have the same number of symmetries asymptotically obeys an inverse square-root law. Precise estimates for these problems are obtained by methods of analytic combinatorics, involving bivariate generating functions, singularity analysis, and quasi-powers approximations.
Using the framework of overpartitions, we give a combinatorial interpretation and proof of the q-Bailey identity. We then deduce from this identity a couple of facts about overpartitions. We show that the method of proof of the q-Bailey identity also applies to the (first) q-Gauss identity.
We show that some q-series such as universal mock theta functions are linear sums of theta quotients and mock Jacobi forms of weight 1/2, which become holomorphic parts of real analytic modular forms when they are restricted to torsion points and multiplied by suitable powers of q. We also prove that certain linear sums of q-series are weakly holomorphic modular forms of weight 1/2 due to annihilation of mock Jacobi forms or completion by mock Jacobi forms. As an application, we obtain a relation between the rank and crank of a partition.
Using elementary means, we derive an explicit formula for a3(n), the number of 3-core partitions of n, in terms of the prime factorization of 3n+1. Based on this result, we are able to prove several infinite families of arithmetic results involving a3(n), one of which specializes to the recent result of Baruah and Berndt which states that, for all n≥0, a3(4n+1)=a3(n).
We count how many ‘different’ Morse functions exist on the 2-sphere. There are several ways of declaring that two Morse functions f and g are ‘indistinguishable’ but we concentrate only on two natural equivalence relations: homological (when the regular sublevel sets f and g have identical Betti numbers) and geometric (when f is obtained from g via global, orientation-preserving changes of coordinates on S2 and ℝ). The count of homological classes is reduced to a count of lattice paths confined to the first quadrant. The count of geometric classes is reduced to a count of certain labeled trees, which is encoded by certain elliptic integrals.
Hu et al. [“A boundary problem for group testing”, SIAM J. Algebraic Discrete Meth.2 (1981), 81–87] conjectured that the minimax test number to find d defectives in 3d items is 3d−1, a surprisingly difficult combinatorial problem about which very little is known. In this article we state three more conjectures and prove that they are all equivalent to the conjecture of Hu et al. Notably, as a byproduct, we also obtain an interesting upper bound for M(d,n).
A large deviations principle (LDP), demonstrated for occupancy problems with indistinguishable balls, is generalized to the case in which balls are distinguished by a finite number of colors. The colors of the balls are chosen independently from the occupancy process itself. There are r balls thrown into n urns with the probability of a ball entering a given urn being 1/n (i.e. Maxwell-Boltzmann statistics). The LDP applies with the scale parameter, n, tending to infinity and r increasing proportionally. The LDP holds under mild restrictions, the key one being that the coloring process by itself satisfies an LDP. This includes the important special cases of deterministic coloring patterns and colors chosen with fixed probabilities independently for each ball.
An occupancy model that has arisen in the investigation of randomized distributed schedules in all-optical networks is considered. The model consists of B initially empty urns, and at stage j of the process dj ≤ B balls are placed in distinct urns with uniform probability. Let Mi(j) denote the number of urns containing i balls at the end of stage j. An explicit expression for the joint factorial moments of M0(j) and M1(j) is obtained. A multivariate generating function for the joint factorial moments of Mi(j), 0 ≤ i ≤ I, is derived (where I is a positive integer). Finally, the case in which the dj, j ≥ 1, are independent, identically distributed random variables is investigated.
Consider the random variable Ln defined as the length of a longest common subsequence of two random strings of length n and whose random characters are independent and identically distributed over a finite alphabet. Chvátal and Sankoff showed that the limit γ=limn→∞E[Ln]/n is well defined. The exact value of this constant is not known, but various methods for the computation of upper and lower bounds have been discussed in the literature. Even so, high-precision bounds are hard to come by. In this paper we discuss how large deviation theory can be used to derive a consistent sequence of upper bounds, (qm)m∈ℕ, on γ, and how Monte Carlo simulation can be used in theory to compute estimates, q̂m, of the qm such that, for given Ξ > 0 and Λ ∈ (0,1), we have P[γ < q̂ < γ + Ξ] ≥ Λ. In other words, with high probability the result is an upper bound that approximates γ to high precision. We establish O((1 − Λ)−1Ξ−(4+ε)) as a theoretical upper bound on the complexity of computing q̂m to the given level of accuracy and confidence. Finally, we discuss a practical heuristic based on our theoretical approach and discuss its empirical behavior.
We propose a simple and efficient scheme for ranking all teams in a tournament where matches can be played simultaneously. We show that the distribution of the number of rounds of the proposed scheme can be derived using lattice path counting techniques used in ballot problems. We also discuss our method from the viewpoint of parallel sorting algorithms.
In DNA sequences, specific words may take on biological functions as marker or signalling sequences. These may often be identified by frequent-word analyses as being particularly abundant. Accurate statistics is needed to assess the statistical significance of these word frequencies. The set of shuffled sequences - letter sequences having the same k-word composition, for some choice of k, as the sequence being analysed - is considered the most appropriate sample space for analysing word counts. However, little is known about these word counts. Here we present exact formulae for word counts in shuffled sequences.
Let Yk(ω) (k ≥ 0) be the number of vertices of a Galton-Watson tree ω that have k children, so that Z(ω) := ∑k≥0Yk(ω) is the total progeny of ω. In this paper, we will prove various statistical properties of Z and Yk. We first show, under a mild condition, an asymptotic expansion of P(Z = n) as n → ∞, improving the theorem of Otter (1949). Next, we show that Yk(ω) := ∑j=0kYj(ω) is the total progeny of a new Galton-Watson tree that is hidden in the original tree ω. We then proceed to study the joint probability distribution of Z and Ykk, and show that, as n → ∞, Yk/nk is asymptotically Gaussian under the conditional distribution P(· | Z = n).
The central limit theorem for random walks on ℤ in an i.i.d. space-time random environment was proved by Bernabei et al. for almost all realization of the environment, under a small randomness assumption. In this paper, we prove that, in the nearest-neighbour case, when the averaged random walk is symmetric, the almost sure central limit theorem holds for an arbitrary level of randomness.
We investigate the limit distributions associated with cost measures in Sattolo's algorithm for generating random cyclic permutations. The number of moves made by an element turns out to be a mixture of 1 and 1 plus a geometric distribution with parameter ½, where the mixing probability is the limiting ratio of the rank of the element being moved to the size of the permutation. On the other hand, the raw distance traveled by an element to its final destination does not converge in distribution without norming. Linearly scaled, the distance converges to a mixture of a uniform and a shifted product of a pair of independent uniforms. The results are obtained via randomization as a transform, followed by derandomization as an inverse transform. The work extends analysis by Prodinger.