To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We give a new combinatorial interpretation of the stationary distribution of the (partially) asymmetric exclusion process on a finite number of sites in terms of decorated alternative trees and coloured permutations. The corresponding expressions of the multivariate partition functions are then related to multivariate generalisations of Eulerian polynomials for coloured permutations considered recently by N. Williams and the third author, and others. We also discuss stability and negative dependence properties satisfied by the partition functions.
The counting and (upper) mass dimensions of a set A ⊆ $\mathbb{R}^d$ are
$$D(A) = \limsup_{\|C\| \to \infty} \frac{\log | \lfloor A \rfloor \cap C |}{\log \|C\|}, \quad \smash{\overline{D}}\vphantom{D}(A) = \limsup_{\ell \to \infty} \frac{\log | \lfloor A \rfloor \cap [-\ell,\ell)^d |}{\log (2 \ell)},$$
where ⌊A⌋ denotes the set of elements of A rounded down in each coordinate and where the limit supremum in the counting dimension is taken over cubes C ⊆ $\mathbb{R}^d$ with side length ‖C‖ → ∞. We give a characterization of the counting dimension via coverings:
in which the infimum is taken over cubic coverings {Ci} of A ∩ C. Then we prove Marstrand-type theorems for both dimensions. For example, almost all images of A ⊆ $\mathbb{R}^d$ under orthogonal projections with range of dimension k have counting dimension at least min(k, D(A)); if we assume D(A) = D(A), then the mass dimension of A under the typical orthogonal projection is equal to min(k, D(A)). This work extends recent work of Y. Lima and C. G. Moreira.
We apply the concept of braiding sequences to link polynomials to show polynomial growth bounds on the derivatives of the Jones polynomial evaluated on S1 and of the Brandt–Lickorish–Millett–Ho polynomial evaluated on [–2, 2] on alternating and positive knots of given genus. For positive links, boundedness criteria for the coefficients of the Jones, HOMFLY and Kauffman polynomials are derived. (This is a continuation of the paper ‘Applications of braiding sequences. I’: Commun. Contemp. Math.12(5) (2010), 681–726.)
We study cup products in the integral cohomology of the Hilbert scheme of $n$ points on a K3 surface and present a computer program for this purpose. In particular, we deal with the question of which classes can be represented by products of lower degrees.
We propose a new method, probabilistic divide-and-conquer, for improving the success probability in rejection sampling. For the example of integer partitions, there is an ideal recursive scheme which improves the rejection cost from asymptotically order n3/4 to a constant. We show other examples for which a non-recursive, one-time application of probabilistic divide-and-conquer removes a substantial fraction of the rejection sampling cost.
We also present a variation of probabilistic divide-and-conquer for generating i.i.d. samples that exploits features of the coupon collector's problem, in order to obtain a cost that is sublinear in the number of samples.
In a recent paper, Baxter and Zeilberger showed that the two most important Mahonian statistics, the inversion number and the major index, are asymptotically independently normally distributed on permutations. In another recent paper, Canfield, Janson and Zeilberger proved the result, already known to statisticians, that the Mahonian distribution is asymptotically normal on words. This leaves one question unanswered: What, asymptotically, is the joint distribution of the inversion number and the major index on words? We answer this question by establishing convergence to a bivariate normal distribution.
We continue our study of intermediate sums over polyhedra, interpolating between integrals and discrete sums, which were introduced by Barvinok [Computing the Ehrhart quasi-polynomial of a rational simplex. Math. Comp. 75 (2006), 1449–1466]. By well-known decompositions, it is sufficient to consider the case of affine cones $s+\mathfrak{c}$, where $s$ is an arbitrary real vertex and $\mathfrak{c}$ is a rational polyhedral cone. For a given rational subspace $L$, we define the intermediate generating functions $S^{L}(s+\mathfrak{c})(\unicode[STIX]{x1D709})$ by integrating an exponential function over all lattice slices of the affine cone $s+\mathfrak{c}$ parallel to the subspace $L$ and summing up the integrals. We expose the bidegree structure in parameters $s$ and $\unicode[STIX]{x1D709}$, which was implicitly used in the algorithms in our papers [Computation of the highest coefficients of weighted Ehrhart quasi-polynomials of rational polyhedra. Found. Comput. Math.12 (2012), 435–469] and [Intermediate sums on polyhedra: computation and real Ehrhart theory. Mathematika59 (2013), 1–22]. The bidegree structure is key to a new proof for the Baldoni–Berline–Vergne approximation theorem for discrete generating functions [Local Euler–Maclaurin expansion of Barvinok valuations and Ehrhart coefficients of rational polytopes. Contemp. Math.452 (2008), 15–33], using the Fourier analysis with respect to the parameter $s$ and a continuity argument. Our study also enables a forthcoming paper, in which we study intermediate sums over multi-parameter families of polytopes.
In this paper we give an extension of the results of the generalized waiting time problem given by El-Desouky and Hussen (1990). An urn contains m types of balls of unequal numbers, and balls are drawn with replacement until first duplication. In the case of finite memory of order k, let ni be the number of type i, i = 1, 2, …, m. The probability of success pi = ni/N, i = 1, 2, …, m, where ni is a positive integer and Let Ym,k be the number of drawings required until first duplication. We obtain some new expressions of the probability function, in terms of Stirling numbers, symmetric polynomials, and generalized harmonic numbers. Moreover, some special cases are investigated. Finally, some important new combinatorial identities are obtained.
We prove the unimodality of some coloured $q$-Eulerian polynomials, which involve the flag excedances, the major index and the fixed points on coloured permutation groups, via two recurrence formulas. In particular, we confirm a recent conjecture of Mongelli about the unimodality of the flag excedances over type B derangements. Furthermore, we find the coloured version of Gessel’s hook factorisation, which enables us to interpret these two recurrences combinatorially. We also provide a combinatorial proof of a symmetric and unimodal expansion for the coloured derangement polynomial, which was first established by Shin and Zeng using continued fractions.
Let $b_{3,5}(n)$ denote the number of partitions of $n$ into parts that are not multiples of 3 or 5. We establish several infinite families of congruences modulo 2 for $b_{3,5}(n)$. In the process, we also prove numerous parity results for broken 7-diamond partitions.
A set A of positive integers is a Bh-set if all the sums of the form a1 + . . . + ah, with a1,. . .,ah ∈ A and a1 ⩽ . . . ⩽ ah, are distinct. We provide asymptotic bounds for the number of Bh-sets of a given cardinality contained in the interval [n] = {1,. . .,n}. As a consequence of our results, we address a problem of Cameron and Erdős (1990) in the context of Bh-sets. We also use these results to estimate the maximum size of a Bh-sets contained in a typical (random) subset of [n] with a given cardinality.
We examine the tail distributions of integer partition ranks and cranks by investigating tail moments, which are analogous to the positive moments introduced by Andrews et al. [‘The odd moments of ranks and cranks’, J. Combin. Theory Ser. A120(1) (2013), 77–91].
A family of sets is called union-closed if whenever A and B are sets of the family, so is A ∪ B. The long-standing union-closed conjecture states that if a family of subsets of [n] is union-closed, some element appears in at least half the sets of the family. A natural weakening is that the union-closed conjecture holds for large families, that is, families consisting of at least p02n sets for some constant p0. The first result in this direction appears in a recent paper of Balla, Bollobás and Eccles [1], who showed that union-closed families of at least $\tfrac{2}{3}$2n sets satisfy the conjecture; they proved this by determining the minimum possible average size of a set in a union-closed family of given size. However, the methods used in that paper cannot prove a better constant than $\tfrac{2}{3}$. Here, we provide a stability result for the main theorem of [1], and as a consequence we prove the union-closed conjecture for families of at least ($\tfrac{2}{3}$ − c)2n sets, for a positive constant c.
We consider ‘unconstrained’ random k-XORSAT, which is a uniformly random system of m linear non-homogeneous equations in $\mathbb{F}$2 over n variables, each equation containing k ⩾ 3 variables, and also consider a ‘constrained’ model where every variable appears in at least two equations. Dubois and Mandler proved that m/n = 1 is a sharp threshold for satisfiability of constrained 3-XORSAT, and analysed the 2-core of a random 3-uniform hypergraph to extend this result to find the threshold for unconstrained 3-XORSAT.
We show that m/n = 1 remains a sharp threshold for satisfiability of constrained k-XORSAT for every k ⩾ 3, and we use standard results on the 2-core of a random k-uniform hypergraph to extend this result to find the threshold for unconstrained k-XORSAT. For constrained k-XORSAT we narrow the phase transition window, showing that m − n → −∞ implies almost-sure satisfiability, while m − n → +∞ implies almost-sure unsatisfiability.
We make a systematic study of a new combinatorial construction called a dual equivalence graph. We axiomatize these graphs and prove that their generating functions are symmetric and Schur positive. This provides a universal method for establishing the symmetry and Schur positivity of quasisymmetric functions.
Let $\text{pod}_{-4}(n)$ denote the number of partition quadruples of $n$ where the odd parts in each partition are distinct. We find many arithmetic properties of $\text{pod}_{-4}(n)$ including the following infinite family of congruences: for any integers ${\it\alpha}\geq 1$ and $n\geq 0$,
In [1], the authors consider a random walk (Zn,1, . . ., Zn,K+1) ∈ ${\mathbb{Z}}$K+1 with the constraint that each coordinate of the walk is at distance one from the following coordinate. A functional central limit theorem for the first coordinate is proved and the limit variance is explicited. In this paper, we study an extended version of this model by conditioning the extremal coordinates to be at some fixed distance at every time. We prove a functional central limit theorem for this random walk. Using combinatorial tools, we give a precise formula of the variance and compare it with that obtained in [1].
The shadow of a system of sets is all sets which can be obtained by taking a set in the original system, and removing a single element. The Kruskal-Katona theorem tells us the minimum possible size of the shadow of $\mathcal A$, if $\mathcal A$ consists of m r-element sets.
In this paper, we ask questions and make conjectures about the minimum possible size of a partial shadow for $\mathcal A$, which contains most sets in the shadow of $\mathcal A$. For example, if $\mathcal B$ is a family of sets containing all but one set in the shadow of each set of $\mathcal A$, how large must $\mathcal B$ be?