To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let (X, Y) = (Xn, Yn)n≥1 be the output process generated by a hidden chain Z = (Zn)n≥1, where Z is a finite-state, aperiodic, time homogeneous, and irreducible Markov chain. Let LCn be the length of the longest common subsequences of X1,..., Xn and Y1,..., Yn. Under a mixing hypothesis, a rate of convergence result is obtained for E[LCn]/n.
Our main result establishes Andrews’ conjecture for the asymptotic of the generating function for the number of integer partitions of $n$ without $k$ consecutive parts. The methods we develop are applicable in obtaining asymptotics for stochastic processes that avoid patterns; as a result they yield asymptotics for the number of partitions that avoid patterns.
Holroyd, Liggett, and Romik, in connection with certain bootstrap percolation models, introduced the study of partitions without $k$ consecutive parts. Andrews showed that when $k=2$, the generating function for these partitions is a mixed-mock modular form and, thus, has modularity properties which can be utilized in the study of this generating function. For $k>2$, the asymptotic properties of the generating functions have proved more difficult to obtain. Using $q$-series identities and the $k=2$ case as evidence, Andrews stated a conjecture for the asymptotic behavior. Extensive computational evidence for the conjecture in the case $k=3$ was given by Zagier.
This paper improved upon early approaches to this problem by identifying and overcoming two sources of error. Since the writing of this paper, a more precise asymptotic result was established by Bringmann, Kane, Parry, and Rhoades. That approach uses very different methods.
We construct a shifted version of the Turán sieve method developed by R. Murty and the second author and apply it to counting problems on tournaments. More precisely, we obtain upper bounds for the number of tournaments which contain a fixed number of restricted $r$-cycles. These are the first concrete results which count the number of cycles over “all tournaments”.
A cyclotomic polynomial $\unicode[STIX]{x1D6F7}_{k}(x)$ is an essential cyclotomic factor of $f(x)\in \mathbb{Z}[x]$ if $\unicode[STIX]{x1D6F7}_{k}(x)\mid f(x)$ and every prime divisor of $k$ is less than or equal to the number of terms of $f.$ We show that if a monic polynomial with coefficients from $\{-1,0,1\}$ has a cyclotomic factor, then it has an essential cyclotomic factor. We use this result to prove a conjecture posed by Mercer [‘Newman polynomials, reducibility, and roots on the unit circle’, Integers12(4) (2012), 503–519].
for $n\ges 0$. In this paper, we obtain the relation between the Jacobi continued fraction of the ordinary generating function of yn(q) and that of xn(q). We also prove that the transformation preserves q-TPr+1 (q-TP) property of the Hankel matrix $[x_{i+j}(q)]_{i,j \ges 0}$, in particular for r = 2,3, implying the r-q-log-convexity of the sequence $\{y_n(q)\}_{n\ges 0}$. As applications, we can give the continued fraction expressions of Eulerian polynomials of types A and B, derangement polynomials types A and B, general Eulerian polynomials, Dowling polynomials and Tanny-geometric polynomials. In addition, we also prove the strong q-log-convexity of derangement polynomials type B, Dowling polynomials and Tanny-geometric polynomials and 3-q-log-convexity of general Eulerian polynomials, Dowling polynomials and Tanny-geometric polynomials. We also present a new proof of the result of Pólya and Szegö about the binomial convolution preserving the Stieltjes moment property and a new proof of the result of Zhu and Sun on the binomial transformation preserving strong q-log-convexity.
Bevan established that the growth rate of a monotone grid class of permutations is equal to the square of the spectral radius of a related bipartite graph. We give an elementary and self-contained proof of a generalization of this result using only Stirling's formula, the method of Lagrange multipliers, and the singular value decomposition of matrices. Our proof relies on showing that the maximum over the space of n × n matrices with non-negative entries summing to one of a certain function of those entries, parametrized by the entries of another matrix Γ of non-negative real numbers, is equal to the square of the largest singular value of Γ and that the maximizing point can be expressed as a Hadamard product of Γ with the tensor product of singular vectors for its greatest singular value.
Let $n,r,k\in \mathbb{N}$. An $r$-colouring of the vertices of a regular $n$-gon is any mapping $\unicode[STIX]{x1D712}:\mathbb{Z}_{n}\rightarrow \{1,2,\ldots ,r\}$. Two colourings are equivalent if one of them can be obtained from another by a rotation of the polygon. An $r$-ary necklace of length $n$ is an equivalence class of $r$-colourings of $\mathbb{Z}_{n}$. We say that a colouring is $k$-alternating if all $k$ consecutive vertices have pairwise distinct colours. We compute the smallest number $r$ for which there exists a $k$-alternating $r$-colouring of $\mathbb{Z}_{n}$ and we count, for any $r$, 2-alternating $r$-colourings of $\mathbb{Z}_{n}$ and 2-alternating $r$-ary necklaces of length $n$.
A strongly concave composition of $n$ is an integer partition with strictly decreasing and then increasing parts. In this paper we give a uniform asymptotic formula for the rank statistic of a strongly concave composition introduced by Andrews et al. [‘Modularity of the concave composition generating function’, Algebra Number Theory7(9) (2013), 2103–2139].
We prove a generalmulti-dimensional central limit theorem for the expected number of vertices of a given degree in the family of planar maps whose vertex degrees are restricted to an arbitrary (finite or infinite) set of positive integers D. Our results rely on a classical bijection with mobiles (objects exhibiting a tree structure), combined with refined analytic tools to deal with the systems of equations on infinite variables that arise. We also discuss possible extensions to maps of higher genus and to weighted maps.
We show that for any n and q, the number of real conjugacy classes in $ \rm{PGL}(\it{n},\mathbb{F}_q) $ is equal to the number of real conjugacy classes of $ \rm{GL}(\it{n},\mathbb{F}_q) $ which are contained in $ \rm{SL}(\it{n},\mathbb{F}_q) $, refining a result of Lehrer [J. Algebra36(2) (1975), 278–286] and extending the result of Gill and Singh [J. Group Theory14(3) (2011), 461–489] that this holds when n is odd or q is even. Further, we show that this quantity is equal to the number of real conjugacy classes in $ \rm{PGU}(\it{n},\mathbb{F}_q) $, and equal to the number of real conjugacy classes of $ \rm{U}(\it{n},\mathbb{F}_q) $ which are contained in $ \rm{SU}(\it{n},\mathbb{F}_q) $, refining results of Gow [Linear Algebra Appl.41 (1981), 175–181] and Macdonald [Bull. Austral. Math. Soc.23(1) (1981), 23–48]. We also give a generating function for this common quantity.
Fixing a positive integer r and $0 \les k \les r-1$, define $f^{\langle r,k \rangle }$ for every formal power series f as $ f(x) = f^{\langle r,0 \rangle }(x^r)+xf^{\langle r,1 \rangle }(x^r)+ \cdots +x^{r-1}f^{\langle r,r-1 \rangle }(x^r).$ Jochemko recently showed that the polynomial $U^{n}_{r,k}\, h(x) := ( (1+x+\cdots +x^{r-1})^{n} h(x) )^{\langle r,k \rangle }$ has only non-positive zeros for any $r \ges \deg h(x) -k$ and any positive integer n. As a consequence, Jochemko confirmed a conjecture of Beck and Stapledon on the Ehrhart polynomial $h(x)$ of a lattice polytope of dimension n, which states that $U^{n}_{r,0}\,h(x)$ has only negative, real zeros whenever $r\ges n$. In this paper, we provide an alternative approach to Beck and Stapledon's conjecture by proving the following general result: if the polynomial sequence $( h^{\langle r,r-i \rangle }(x))_{1\les i \les r}$ is interlacing, so is $( U^{n}_{r,r-i}\, h(x) )_{1\les i \les r}$. Our result has many other interesting applications. In particular, this enables us to give a new proof of Savage and Visontai's result on the interlacing property of some refinements of the descent generating functions for coloured permutations. Besides, we derive a Carlitz identity for refined coloured permutations.
A classical result of Honsberger states that the number of incongruent triangles with integer sides and perimeter $n$ is the nearest integer to $n^{2}/48$ ($n$ even) or $(n+3)^{2}/48$ ($n$ odd). We solve the analogous problem for $m$-gons (for arbitrary but fixed $m\geq 3$) and for polygons (with arbitrary number of sides).
We prove some congruences on sums involving fourth powers of central q-binomial coefficients. As a conclusion, we confirm the following supercongruence observed by Long [Pacific J. Math. 249 (2011), 405–418]:
where p⩾5 is a prime and r is a positive integer. Our method is similar to but a little different from the WZ method used by Zudilin to prove Ramanujan-type supercongruences.
the pioneer of interchange laws in universal algebra
We establish a combinatorial model for the Boardman–Vogt tensor product of several absolutely free operads, that is, free symmetric operads that are also free as 𝕊-modules. Our results imply that such a tensor product is always a free 𝕊-module, in contrast with the results of Kock and Bremner–Madariaga on hidden commutativity for the Boardman–Vogt tensor square of the operad of non-unital associative algebras.
In 2010, Hei-Chi Chan introduced the cubic partition function a(n) in connection with Ramanujan's cubic continued fraction. Chen and Lin, and Ahmed, Baruah and Dastidar proved that a(25n + 22) ≡ 0 (mod 5) for n ⩾ 0. In this paper, we prove several infinite families of congruences modulo 5 and 7 for a(n). Our results generalize the congruence a(25n + 22) ≡ 0 (mod 5) and four congruences modulo 7 for a(n) due to Chen and Lin. Moreover, we present some non-standard congruences modulo 5 for a(n) by using an identity of Newman. For example, we prove that $a((({15\times 17^{3\alpha }+1})/{8})) \equiv 3^{\alpha +1} \ ({\rm mod}\ 5)$ for α ⩾ 0.
We study the percolation model on Boltzmann triangulations using a generating function approach. More precisely, we consider a Boltzmann model on the set of finite planar triangulations, together with a percolation configuration (either site-percolation or bond-percolation) on this triangulation. By enumerating triangulations with boundaries according to both the boundary length and the number of vertices/edges on the boundary, we are able to identify a phase transition for the geometry of the origin cluster. For instance, we show that the probability that a percolation interface has length $n$ decays exponentially with $n$ except at a particular value $p_{c}$ of the percolation parameter $p$ for which the decay is polynomial (of order $n^{-10/3}$). Moreover, the probability that the origin cluster has size $n$ decays exponentially if $p<p_{c}$ and polynomially if $p\geqslant p_{c}$.
The critical percolation value is $p_{c}=1/2$ for site percolation, and $p_{c}=(2\sqrt{3}-1)/11$ for bond percolation. These values coincide with critical percolation thresholds for infinite triangulations identified by Angel for site-percolation, and by Angel and Curien for bond-percolation, and we give an independent derivation of these percolation thresholds.
Lastly, we revisit the criticality conditions for random Boltzmann maps, and argue that at $p_{c}$, the percolation clusters conditioned to have size $n$ should converge toward the stable map of parameter $\frac{7}{6}$ introduced by Le Gall and Miermont. This enables us to derive heuristically some new critical exponents.
We investigate arithmetic, geometric and combinatorial properties of symmetric edge polytopes. We give a complete combinatorial description of their facets. By combining Gröbner basis techniques, half-open decompositions and methods for interlacing polynomials we provide an explicit formula for the $h^{\ast }$-polynomial in case of complete bipartite graphs. In particular, we show that the $h^{\ast }$-polynomial is $\unicode[STIX]{x1D6FE}$-positive and real-rooted. This proves Gal’s conjecture for arbitrary flag unimodular triangulations in this case, and, beyond that, we prove a strengthening due to Nevo and Petersen [On $\unicode[STIX]{x1D6FE}$-vectors satisfying the Kruskal–Katona inequalities. Discrete Comput. Geom.45(3) (2011), 503–521].
We consider sequences of the form $(a_{n}\unicode[STIX]{x1D6FC})_{n}$ mod 1, where $\unicode[STIX]{x1D6FC}\in [0,1]$ and where $(a_{n})_{n}$ is a strictly increasing sequence of positive integers. If the asymptotic distribution of the pair correlations of this sequence follows the Poissonian model for almost all $\unicode[STIX]{x1D6FC}$ in the sense of Lebesgue measure, we say that $(a_{n})_{n}$ has the metric pair correlation property. Recent research has revealed a connection between the metric theory of pair correlations of such sequences, and the additive energy of truncations of $(a_{n})_{n}$. Bloom, Chow, Gafni and Walker speculated that there might be a convergence/divergence criterion which fully characterizes the metric pair correlation property in terms of the additive energy, similar to Khintchine’s criterion in the metric theory of Diophantine approximation. In the present paper we give a negative answer to such speculations, by showing that such a criterion does not exist. To this end, we construct a sequence $(a_{n})_{n}$ having large additive energy which, however, maintains the metric pair correlation property.