To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We derive the asymptotic joint normality, by a martingale approach, for the numbers of upper records, lower records and inversions in a random sequence.
We give some higher dimensional analogues of the Durfee square formula and point out their relation to dissections of multipartitions. We apply the results to write certain affine Lie algebra characters in terms of Universal Chiral Partition Functions.
The application of the generalised ballot theorem to queueing theory leads to elegant results for the simple M/G/1 queue. It is thought that such results are not possible for more general M/G/1-type queues. We, however, derive a batch ballot theorem which can be applied to derive the first passage distribution matrix, G, for the general M/G/1-type queue.
Classic works of Karlin and McGregor and Jones and Magnus have established a general correspondence between continuous-time birth-and-death processes and continued fractions of the Stieltjes-Jacobi type together with their associated orthogonal polynomials. This fundamental correspondence is revisited here in the light of the basic relation between weighted lattice paths and continued fractions otherwise known from combinatorial theory. Given that sample paths of the embedded Markov chain of a birth-and-death process are lattice paths, Laplace transforms of a number of transient characteristics can be obtained systematically in terms of a fundamental continued fraction and its family of convergent polynomials. Applications include the analysis of evolutions in a strip, upcrossing and downcrossing times under flooring and ceiling conditions, as well as time, area, or number of transitions while a geometric condition is satisfied.
We analyse the expected performance of various group testing, or pooling, designs. The context is that of identifying characterized clones in a large collection of clones. Here we choose as performance criterion the expected number of unresolved ‘negative’ clones, and we aim to minimize this quantity. Technically, long inclusion–exclusion summations are encountered which, aside from being computationally demanding, give little inkling of the qualitative effect of parametric control on the pooling strategy. We show that readily-interpreted re-summation can be performed, leading to asymptotic forms and systematic corrections. We apply our results to randomized designs, illustrating how they might be implemented for approximating combinatorial formulae.
A random mapping (Tn;q) of a finite set V, V = {1,2,…,n}, into itself assigns independently to each i ∊ V its unique image j ∊ V with probability q if i = j and with probability P = (1-q)/(n−1) if i ≠ j. Three versions of epidemic processes on a random digraph GT representing (Tn;q) are studied. The exact probability distributions of the total number of infected elements as well as the threshold functions for these epidemic processes are determined.
A general analytic scheme for Poisson approximation to discrete distributions is studied in which the asymptotic behaviours of the generalized total variation, Fortet-Mourier (or Wasserstein), Kolmogorov and Matusita (or Hellinger) distances are explicitly characterized. Applications of this result include many number-theoretic functions and combinatorial structures. Our approach differs from most of the existing ones in the literature and is easily amended for other discrete approximations; arithmetic and combinatorial examples for Bessel approximation are also presented. A unified approach is developed for deriving uniform estimates for probability generating functions of the number of components in general decomposable combinatorial structures, with or without analytic continuation outside their circles of convergence.
Given a group G and a finite generating set G, we take pG: G → Z to be the function which counts the number of geodesics for each group element g. This generalizes Pascal's triangle. We compute pG for word hyperbolic and describe generic behaviour in abelian groups.
A new, elementary proof of the Macdonald identities for An−1 using induction on n is given. Specifically, the Macdonald identity for An is deduced by multiplying the Macdonald identity for An−1 and n Jacobi triple product identities together.
This paper studies the absorption time of an integer-valued Markov chain with a lower-triangular transition matrix. The main results concern the asymptotic behavior of the absorption time when the starting point tends to infinity (asymptotics of moments and central limit theorem). They are obtained using stochastic comparison for Markov chains and the classical theorems of renewal theory. Applications to the description of large random chains of partitions and large random ordered partitions are given.
It has been conjectured that for any union-closed set there exists some element which is contained in at least half the sets in . It is shown that this conjecture is true if the number of sets in is less than 25. Several conditions on a counterexample are also obtained.
Let fn be a sequence of nonnegative integers and let f(x): = Σn≥0 fn xn be its generating function. Assume f(x) has the following properties: it has radius of convergence r, 0 < r < 1, with its only singualarity on the circle of convergence at x = r and f(r) = s; y = f(x) satisfies an analytic identity F(x, y) = 0 near (r, s); for some k ≥ 2 F0.j = 0, 0 ≤ j < k, F0.k ≠ 0 where Fi is the value at (r, s) of the ith partial derivative with respect to x and the jth partial derivative with respect to y of F. These assumptions form the basis of what we call the typical and general cases. In both cases we show how to obtain an asymptotic expansion of fn. We apply our technique to produce several terms in the asymptotic expansion of combinatorial sequences for which previously only the first term was known.
In this contribution we consider an M/M/1 queueing model with general server vacations. Transient and steady state analysis are carried out in discrete time by combinatorial methods. Using weak convergence of discrete-parameter Markov chains we also obtain formulas for the corresponding continuous-time queueing model. As a special case we discuss briefly a queueing system with a T-policy operating.
Let = {A1, …, An} be a union-closed set. This note establishes a property which must be possessed by any smallest counterexample to the Union-Closed Sets Conjecture. Specifically, a counterexample to the conjecture with minimal n has at least three distinct elements, each of which appears in exactly (n − 1)/2 of the .
We shall say that the sets A, B ⊂ Rk are equivalent, if they are equidecomposable using translations; that is, if there are finite decompositions and vectors x1,…, xd∈Rk such that Bj = Aj + xj, (j = 1,…,d). We shall denote this fact by In [3], Theorem 3 we proved that if A ⊂ Rk is a bounded measurable set of positive measure then A is equivalent to a cube provided that Δ(δA)<k where δA denotes the boundary of A and Δ(E) denotes the packing dimension (or box dimension or upper entropy index) of the bounded set E. This implies, in particular, that any bounded convex set of positive measure is equivalent to a cube. C. A. Rogers asked whether or not the set
We consider a variety of algebras with two binary commutative and associative operations. For each integer n ≥ 0, we represent the partitions on an n-element set as n-ary terms in the variety. We determine necessary and sufficient conditions on the variety ensuring that, for each n, these representing terms be all the essentially n-ary terms and moreover that distinct partitions yield distinct terms.
For a two-dimensional random walk {X (n) = (X(n)1, X(n)2)T, n ∈ ℕ0} with correlated components the first-crossing-time probability problem through unit-slope straight lines x2 = x1 - r(r = 0,1) is analysed. The p.g.f.'s for the first-crossing-time probabilities are expressed as solutions of a fourth-degree algebraic equation and are then exploited to obtain the first-crossing-time probabilities. Several additional results, including the mean first-crossing time and the probability of ultimate crossing, are also given.
By studying the minimum of moving maxima, that is the maxima taken over a sliding window of length k in an i.i.d. sequence, we obtain new results on the reliability of consecutive k-out-of-n systems. In particular, we give the reliability asymptotically with both k and n varying. The underlying method of our approach is to analyze the singularities of a generating function.
A slightly strengthened version of the union-closed sets conjecture is proposed. It is shown that this version holds for a minimum set size of one or two and an examination of a boundary function shows that it holds for collections containing up to 19 sets. Some related conjectures are outlined.