To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Using the framework of overpartitions, we give a combinatorial interpretation and proof of the q-Bailey identity. We then deduce from this identity a couple of facts about overpartitions. We show that the method of proof of the q-Bailey identity also applies to the (first) q-Gauss identity.
We show that some q-series such as universal mock theta functions are linear sums of theta quotients and mock Jacobi forms of weight 1/2, which become holomorphic parts of real analytic modular forms when they are restricted to torsion points and multiplied by suitable powers of q. We also prove that certain linear sums of q-series are weakly holomorphic modular forms of weight 1/2 due to annihilation of mock Jacobi forms or completion by mock Jacobi forms. As an application, we obtain a relation between the rank and crank of a partition.
Using elementary means, we derive an explicit formula for a3(n), the number of 3-core partitions of n, in terms of the prime factorization of 3n+1. Based on this result, we are able to prove several infinite families of arithmetic results involving a3(n), one of which specializes to the recent result of Baruah and Berndt which states that, for all n≥0, a3(4n+1)=a3(n).
Let g1, g2, …, gn be a sequence of mutually independent, normally distributed, random variables with mathematical expectation zero and variance unity. In this work, we obtain the average number of real zeros of the random algebraic equations Σnk=1 Kσ gk(ω)tk = C, where C is a constant independent of t and not necessarily zero. This average is (1/π) log n, when n is large and σ is non-negative.
Let P be a finite, connected partially ordered set containing no crowns and let Q be a subset of P. Then the following conditions are equivalent: (1) Q is a retract of P; (2) Q is the set of fixed points of an order-preserving mapping of P to P; (3) Q is obtained from P by dismantling by irreducibles.
Let fn be a sequence of nonnegative integers and let f(x): = Σn≥0 fn xn be its generating function. Assume f(x) has the following properties: it has radius of convergence r, 0 < r < 1, with its only singualarity on the circle of convergence at x = r and f(r) = s; y = f(x) satisfies an analytic identity F(x, y) = 0 near (r, s); for some k ≥ 2 F0.j = 0, 0 ≤ j < k, F0.k ≠ 0 where Fi is the value at (r, s) of the ith partial derivative with respect to x and the jth partial derivative with respect to y of F. These assumptions form the basis of what we call the typical and general cases. In both cases we show how to obtain an asymptotic expansion of fn. We apply our technique to produce several terms in the asymptotic expansion of combinatorial sequences for which previously only the first term was known.
Let = {A1, …, An} be a union-closed set. This note establishes a property which must be possessed by any smallest counterexample to the Union-Closed Sets Conjecture. Specifically, a counterexample to the conjecture with minimal n has at least three distinct elements, each of which appears in exactly (n − 1)/2 of the .
A slightly strengthened version of the union-closed sets conjecture is proposed. It is shown that this version holds for a minimum set size of one or two and an examination of a boundary function shows that it holds for collections containing up to 19 sets. Some related conjectures are outlined.
Given a group G and a finite generating set G, we take pG: G → Z to be the function which counts the number of geodesics for each group element g. This generalizes Pascal's triangle. We compute pG for word hyperbolic and describe generic behaviour in abelian groups.
A permutation π of the set {1, 2, …, n} is four-discordant if π(i) ≢ i, i+ 1, i + 2, i +3 (mod n) for 1 ≦i ≦ n. Generating functions for rook polynomials associated with four-discordant permutations are derived. Hit polynomials associated with four-discordant permutations are studied. Finally, it is shown that the leading coefficients of these rook polynomials form a “tribonacci” sequence which is a generalized Fibonacci sequence.
Some generalizations of Sperner's theorem and of the LYM inequality are given to the case when A1,… At are t families of subsets of {1,…,m} such that a set in one family does not properly contain a set in another.
A new, elementary proof of the Macdonald identities for An−1 using induction on n is given. Specifically, the Macdonald identity for An is deduced by multiplying the Macdonald identity for An−1 and n Jacobi triple product identities together.
It has been conjectured that for any union-closed set there exists some element which is contained in at least half the sets in . It is shown that this conjecture is true if the number of sets in is less than 25. Several conditions on a counterexample are also obtained.
Let X1, X2, …, Xn be identically distributed independent random variables belonging to the domain of attraction of the normal law, have zero means and Pr{Xr ≠ 0} > 0. Suppose a0, a1, …, an are non-zero real numbers and max and εn is such that as n → ∞, εn. If Nn be the number of real roots of the equation then for n > n0, Nn > εn log n outside an exceptional set of measure at most provided limn→∞ (kn/tn) is finite.
The quintuple product identity has appeared many times in the literature. Indeed, no fewer than 12 proofs have been given. We establish a more general identity from which the quintuple product identity follows in two ways.
We consider certain affine Kac-Moody Lie algebras. We give a Lie theoretic interpretation of the generalized Euler identities by showing that they are associated with certain filtrations of the basic representations of these algebras. In the case when the algebras have prime rank, we also give algebraic proofs of the corresponding identities.
We consider a variety of algebras with two binary commutative and associative operations. For each integer n ≥ 0, we represent the partitions on an n-element set as n-ary terms in the variety. We determine necessary and sufficient conditions on the variety ensuring that, for each n, these representing terms be all the essentially n-ary terms and moreover that distinct partitions yield distinct terms.
Let 〈fn≧0 be nonnegative real numbers with generating function f(x) = Σfnxn. Assume f(x) has the following properties: it has a finite nonzero radius of convergence x0 with its only singularity on the circle of convergence at x = x0 and f(x0) converges to y0; y = f(x) satisfies an analytic identity F(x, y) = 0 near (x0, y0); Fy(l) (x0, y0)= 0, 0 ≦ i < k and Fy(k) (x0, y0) ≠ 0. There are constants γ, a positive rational, and c such that fn~cx0−n n−(1 +ggr;). Furthermore, we show (i) in all cases how to determine γ and c from f(x) and (ii) in certain cases how to determine them from F(x, y).
We count how many ‘different’ Morse functions exist on the 2-sphere. There are several ways of declaring that two Morse functions f and g are ‘indistinguishable’ but we concentrate only on two natural equivalence relations: homological (when the regular sublevel sets f and g have identical Betti numbers) and geometric (when f is obtained from g via global, orientation-preserving changes of coordinates on S2 and ℝ). The count of homological classes is reduced to a count of lattice paths confined to the first quadrant. The count of geometric classes is reduced to a count of certain labeled trees, which is encoded by certain elliptic integrals.
Hu et al. [“A boundary problem for group testing”, SIAM J. Algebraic Discrete Meth.2 (1981), 81–87] conjectured that the minimax test number to find d defectives in 3d items is 3d−1, a surprisingly difficult combinatorial problem about which very little is known. In this article we state three more conjectures and prove that they are all equivalent to the conjecture of Hu et al. Notably, as a byproduct, we also obtain an interesting upper bound for M(d,n).