We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study an epidemic patch model that describes the disease spread in population with variable latency due to the differences in immunologic tolerance between individuals. We focus on whether the disease can spread in space that leads to the emergence of epidemic wave, that is the travelling wave solution with constant speed. We first establish some properties of the linearized wave profile equations, which are helpful in obtaining the priori estimates of travelling waves and wave speeds. Then, applying the truncation method and limiting arguments, we can obtain threshold propagation dynamics of the epidemic model. Our result gives a complete characterization of the existence, nonexistence and minimal wave speed of travelling waves. To the best of our knowledge, this is the first time to characterize the propagation dynamics of epidemic patch model with variable latency, which contributes to the understanding of the transmission phenomenon of disease.
The paper deals with boundedness of solutions and uniform asymptotic stability of the zero solution. In our current undertaking, we aim to solve two open problems that were proposed by the author in his book Qualitative theory of Volterra difference equations (2018, Springer, Cham). Our approach centers on finding the appropriate Lyapunov functional that satisfies specific conditions, incorporating the concept of wedges.
We consider a Poisson autoregressive process whose parameters depend on the past of the trajectory. We allow these parameters to take negative values, modelling inhibition. More precisely, the model is the stochastic process $(X_n)_{n\ge0}$ with parameters $a_1,\ldots,a_p \in \mathbb{R}$, $p\in\mathbb{N}$, and $\lambda \ge 0$, such that, for all $n\ge p$, conditioned on $X_0,\ldots,X_{n-1}$, $X_n$ is Poisson distributed with parameter $(a_1 X_{n-1} + \cdots + a_p X_{n-p} + \lambda)_+$. This process can be regarded as a discrete-time Hawkes process with inhibition and a memory of length p. In this paper we initiate the study of necessary and sufficient conditions of stability for these processes, which seems to be a hard problem in general. We consider specifically the case $p = 2$, for which we are able to classify the asymptotic behavior of the process for the whole range of parameters, except for boundary cases. In particular, we show that the process remains stochastically bounded whenever the solution to the linear recurrence equation $x_n = a_1x_{n-1} + a_2x_{n-2} + \lambda$ remains bounded, but the converse is not true. Furthermore, the criterion for stochastic boundedness is not symmetric in $a_1$ and $a_2$, in contrast to the case of non-negative parameters, illustrating the complex effects of inhibition.
We prove a difference analogue of the celebrated Tumura–Hayman–Clunie theorem. Let f be a transcendental entire function, let c be a nonzero constant and let n be a positive integer. If f and $\Delta _c^n f$ omit zero in the whole complex plane, then either $f(z)=\exp (h_1(z)+C_1 z)$, where $h_1$ is an entire function of period c and $\exp (C_1 c)\neq 1$, or $f(z)=\exp (h_2(z)+C_2 z)$, where $h_2$ is an entire function of period $2c$ and $C_2$ satisfies
In this paper, we consider a semi-classical version of the nonhomogeneous heat equation with singular time-dependent coefficients on the lattice $\hbar \mathbb {Z}^n$. We establish the well-posedness of such Cauchy problems in the classical sense when regular coefficients are considered, and analyse how the notion of very weak solution adapts in such equations when distributional coefficients are regarded. We prove the well-posedness of both the classical and the very weak solution in the weighted spaces $\ell ^{2}_{s}(\hbar \mathbb {Z}^n)$, $s \in \mathbb {R}$, which is enough to prove the well-posedness in the space of tempered distributions $\mathcal {S}'(\hbar \mathbb {Z}^n)$. Notably, when $s=0$, we show that for $\hbar \rightarrow 0$, the classical (resp. very weak) solution of the heat equation in the Euclidean setting $\mathbb {R}^n$ is recaptured by the classical (resp. very weak) solution of it in the semi-classical setting $\hbar \mathbb {Z}^n$.
where a > 0, $b\geq0$, and λ > 0 are constants, $\partial\Omega\neq\emptyset$, $\mathbb{R}^{3}\backslash\Omega$ is bounded, $u\in H_{0}^{1}(\Omega)$, and $f\in C^1(\mathbb{R},\mathbb{R})$ is subcritical and superlinear near infinity. Under some mild conditions, we prove that if
has only finite number of positive solutions in $H^1(\mathbb R^3)$ and the diameter of the hole $\mathbb R^3\setminus \Omega$ is small enough, then the problem (*) admits a positive solution. Same conclusion holds true if Ω is fixed and λ > 0 is small. To our best knowledge, there is no similar result published in the literature concerning the existence of positive solutions to the above Kirchhoff equation in exterior domains.
where $(p(n))$ is a sequence of non-negative real numbers, $(\tau (n))$ is a sequence of integers such that $\tau (n)< n$ for$\ n\in \mathbf {N},\,$and$\ \lim _{n\rightarrow \infty }\tau (n)=\infty.$ Under the assumption that the deviating argument is not necessarily monotone, we obtain some new oscillation conditions and improve the all known results for the above equation in the literature, involving only upper and only lower limit conditions. Two examples illustrating the results are also given.
In this paper, we prove several results on the exponential decay in $L^{2}$ norm of the KdV equation on the real line with localized dampings. First, for the linear KdV equation, the exponential decay holds if and only if the averages of the damping coefficient on all intervals of a fixed length have a positive lower bound. Moreover, under the same damping condition, the exponential decay holds for the (nonlinear) KdV equation with small initial data. Finally, with the aid of certain properties of propagation of regularity in Bourgain spaces for solutions of the associated linear system and the unique continuation property, the exponential decay for the KdV equation with large data holds if the damping coefficient has a positive lower bound on $E$, where $E$ is equidistributed over the real line and the complement $E^{c}$ has a finite Lebesgue measure.
In this paper, we characterize jump phenomena of the $n$-th eigenvalue of self-adjoint discrete Sturm–Liouville problems in any dimension. For a fixed Sturm–Liouville equation, we completely characterize jump phenomena of the $n$-th eigenvalue. For a fixed boundary condition, unlike in the continuous case, the $n$-th eigenvalue exhibits jump phenomena and we describe the singularity under a non-degenerate assumption. Compared with the continuous case in Hu et al. (2019, J. Differ. Equ.266, 4106–4136) and Kong et al. (1999, J. Differ. Equ.156, 328–354), the jump set here is involved with coefficients of the Sturm–Liouville equations. This, along with arbitrariness of the dimension, causes difficulty when dividing the jump areas. We study the singularity by partitioning and analysing the local coordinate systems, and provide a Hermitian matrix which can determine the areas’ division. To prove the asymptotic behaviour of the $n$-th eigenvalue, we generalize the method developed in Zhu and Shi (2016, J. Differ. Equ.260, 5987–6016) to any dimension. As an application, by transforming the continuous Sturm–Liouville problem of Atkinson type to a discrete one, we determine the number of eigenvalues and obtain complete characterization of jump phenomena of the $n$-th eigenvalue for the Atkinson type.
For an (irreducible) recurrence equation with coefficients from
$\mathbb Z[n]$
and its two linearly independent rational solutions
$u_n,v_n$
, the limit of
$u_n/v_n$
as
$n\to \infty $
, when it exists, is called the Apéry limit. We give a construction that realises certain quotients of L-values of elliptic curves as Apéry limits.
The renormalization group method has been developed to investigate p-adic q-state Potts models on the Cayley tree of order k. This method is closely related to the examination of dynamical behavior of the p-adic Potts–Bethe mapping which depends on the parameters q, k. In Mukhamedov and Khakimov [Chaotic behavior of the p-adic Potts–Behte mapping. Discrete Contin. Dyn. Syst.38 (2018), 231–245], we have considered the case when q is not divisible by p and, under some conditions, it was established that the mapping is conjugate to the full shift on
$\kappa _p$
symbols (here
$\kappa _p$
is the greatest common factor of k and
$p-1$
). The present paper is a continuation of the forementioned paper, but here we investigate the case when q is divisible by p and k is arbitrary. We are able to fully describe the dynamical behavior of the p-adic Potts–Bethe mapping by means of a Markov partition. Moreover, the existence of a Julia set is established, over which the mapping exhibits a chaotic behavior. We point out that a similar result is not known in the case of real numbers (with rigorous proofs).
For
$R(z, w)\in \mathbb {C}(z, w)$
of degree at least 2 in w, we show that the number of rational functions
$f(z)\in \mathbb {C}(z)$
solving the difference equation
$f(z+1)=R(z, f(z))$
is finite and bounded just in terms of the degrees of R in the two variables. This complements a result of Yanagihara, who showed that any finite-order meromorphic solution to this sort of difference equation must be a rational function. We prove a similar result for the differential equation
$f'(z)=R(z, f(z))$
, building on a result of Eremenko.
We compactify and regularise the space of initial values of a planar map with a quartic invariant and use this construction to prove its integrability in the sense of algebraic entropy. The system has certain unusual properties, including a sequence of points of indeterminacy in
$\mathbb {P}^{1}\!\times \mathbb {P}^{1}$
. These indeterminacy points lie on a singular fibre of the mapping to a corresponding QRT system and provide the existence of a one-parameter family of special solutions.
Let P and Q be relatively prime integers greater than 1, and let f be a real valued discretely supported function on a finite dimensional real vector space V. We prove that if
$f_{P}(x)=f(Px)-f(x)$
and
$f_{Q}(x)=f(Qx)-f(x)$
are both
$\Lambda $
-periodic for some lattice
$\Lambda \subset V$
, then so is f (up to a modification at
$0$
). This result is used to prove a theorem on the arithmetic of elliptic function fields. In the last section, we discuss the higher rank analogue of this theorem and explain why it fails in rank 2. A full discussion of the higher rank case will appear in a forthcoming work.
We study solutions of difference equations in the rings of sequences and, more generally, solutions of equations with a monoid action in the ring of sequences indexed by the monoid. This framework includes, for example, difference equations on grids (for example, standard difference schemes) and difference equations in functions on words. On the universality side, we prove a version of strong Nullstellensatz for such difference equations under the assumption that the cardinality of the ground field is greater than the cardinality of the monoid and construct an example showing that this assumption cannot be omitted. On the undecidability side, we show that the following problems are undecidable:
This paper concerns the study of some bifurcation properties for the following class of Choquard-type equations:
(P)
$$\left\{ {\begin{array}{*{20}{l}}
{ - \Delta u = \lambda f(x)\left[ {u + \left( {{I_\alpha }*f( \cdot )H(u)} \right)h(u)} \right],{\rm{ in }} \ {{\mathbb{R}}^3},}\\
{{{\lim }_{|x| \to \infty }}u(x) = 0,\quad u(x) > 0,\quad x \in {{\mathbb{R}}^3},\quad u \in {D^{1,2}}({{\mathbb{R}}^3}),}
\end{array}} \right.$$
where ${I_\alpha }(x) = 1/|x{|^\alpha },\,\alpha \in (0,3),\,\lambda > 0,\,f:{{\mathbb{R}}^3} \to {\mathbb{R}}$ is a positive continuous function and h : ${\mathbb{R}} \to {\mathbb{R}}$ is a bounded Hölder continuous function. The main tools used are Leray–Schauder degree theory and a global bifurcation result due to Rabinowitz.
By using methods of subordinacy theory, we study packing continuity properties of spectral measures of discrete one-dimensional Schrödinger operators acting on the whole line. Then we apply these methods to Sturmian operators with rotation numbers of quasibounded density to show that they have purely $\unicode[STIX]{x1D6FC}$-packing continuous spectrum. A dimensional stability result is also mentioned.
We study a class of Schrödinger lattice systems with sublinear nonlinearities and perturbed terms. We get an interesting result that the systems do not have nontrivial homoclinic solutions if the perturbed terms are removed, but the systems have ground state homoclinic solutions if the perturbed terms are added. Besides, we also study the continuity of the homoclinic solutions in the perturbation terms at zero. To the best of our knowledge, there is no published result focusing on the perturbed Schrödinger lattice systems.