To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we consider a class of affine Anosov mappings with a quasi-periodic forcing and show that there is a unique positive integer m, which only depends on the system, such that the exponential growth rate of the number of invariant tori of degree m is equal to the topological entropy.
Let $ K $ be a compact subset of the d-torus invariant under an expanding diagonal endomorphism with s distinct eigenvalues. Suppose the symbolic coding of K satisfies weak specification. When $ s \leq 2 $, we prove that the following three statements are equivalent: (A) the Hausdorff and box dimensions of $ K $ coincide; (B) with respect to some gauge function, the Hausdorff measure of $ K $ is positive and finite; (C) the Hausdorff dimension of the measure of maximal entropy on $ K $ attains the Hausdorff dimension of $ K $. When $ s \geq 3 $, we find some examples in which statement (A) does not hold but statement (C) holds, which is a new phenomenon not appearing in the planar cases. Through a different probabilistic approach, we establish the equivalence of statements (A) and (B) for Bedford–McMullen sponges.
The global C0 linearization theorem on Banach spaces was first proposed by Pugh [26], but it requires that the nonlinear term is globally bounded. In the present paper, we discuss global linearization of semilinear autonomous ordinary differential equations on Banach spaces assuming that the linear part is hyperbolic (including contraction as a particular case) and that the nonlinear term is only Lipschitz with a sufficiently small Lipschitz constant. To overcome the difficulties arising in this problem, in this paper, we rely on a splitting lemma to decouple the hyperbolic system into a contractive system along the stable manifold and an expansive system along the unstable manifold. We then construct a transformation to linearize a contractive/expansive system, which is defined by the crossing time with respect to the unit sphere. To demonstrate the strength of our result, we apply our results to a nonlinear Duffing oscillator without external excitation.
We consider the Perron–Frobenius operator defined on the space of functions of bounded variation for the beta-map $\tau _\beta (x)=\beta x$ (mod $1$) for $\beta \in (1,\infty )$, and investigate its isolated eigenvalues except $1$, called non-leading eigenvalues in this paper. We show that the set of $\beta $ such that the corresponding Perron–Frobenius operator has at least one non-leading eigenvalue is open and dense in $(1,\infty )$. Furthermore, we establish the Hölder continuity of each non-leading eigenvalue as a function of $\beta $ and show in particular that it is continuous but non-differentiable, whose analogue was conjectured by Flatto, Lagarias and Poonen in [The zeta function of the beta transformation. Ergod. Th. & Dynam. Sys.14 (1994), 237–266]. In addition, for an eigenfunctional of the Perron–Frobenius operator corresponding to an isolated eigenvalue, we give an explicit formula for the value of the functional applied to the indicator function of every interval. As its application, we provide three results related to non-leading eigenvalues, one of which states that an eigenfunctional corresponding to a non-leading eigenvalue cannot be expressed by any complex measure on the interval, which is in contrast to the case of the leading eigenvalue $1$.
Ergodic optimization aims to describe dynamically invariant probability measures that maximize the integral of a given function. For a wide class of intrinsically ergodic subshifts over a finite alphabet, we show that the space of continuous functions on the shift space contains two disjoint subsets: one is a dense $G_\delta $ set for which all maximizing measures have ‘relatively small’ entropy; the other is the set of functions having uncountably many, fully supported ergodic maximizing measures with ‘relatively large’ entropy. This result generalizes and unifies the results of Morris [Discrete Contin. Dyn. Syst.27 (2010), 383–388] and Shinoda [Nonlinearity31 (2018), 2192–2200] on symbolic dynamics, and applies to a wide class of intrinsically ergodic non-Markov symbolic dynamics without the Bowen specification property, including any transitive piecewise monotonic interval map, some coded shifts, and multidimensional $\beta $-transformations. Along with these examples of application, we provide an example of an intrinsically ergodic subshift with positive obstruction entropy to specification.
We consider local escape rates and hitting time statistics for unimodal interval maps of Misiurewicz–Thurston type. We prove that for any point z in the interval, there is a local escape rate and hitting time statistics that is one of three types. While it is key that we cover all points z, the particular interest here is when z is periodic and in the postcritical orbit that yields the third part of the trichotomy. We also prove generalized asymptotic escape rates of the form first shown by Bruin, Demers and Todd.
Using bi-contact geometry, we define a new type of Dehn surgery on an Anosov flow with orientable weak invariant foliations. The Anosovity of the new flow is strictly connected to contact geometry and the Reeb dynamics of the defining bi-contact structure. This approach gives new insights into the properties of the flows produced by Goodman surgery and clarifies under which conditions Goodman’s construction yields an Anosov flow. Our main application gives a necessary and sufficient condition to generate a contact Anosov flow by Foulon–Hasselblatt Legendrian surgery on a geodesic flow. In particular, we show that this is possible if and only if the surgery is performed along a simple closed geodesic. As a corollary, we have that any positive skewed $\mathbb {R}$-covered Anosov flow obtained by a single surgery on a closed orbit of a geodesic flow is orbit equivalent to a positive contact Anosov flow.
We extend a result of Lopes and Thieullen [Sub-actions for Anosov flows. Ergod. Th. & Dynam. Sys.25(2) (2005), 605–628] on sub-actions for smooth Anosov flows to the setting of geodesic flow on locally CAT($-1$) spaces. This allows us to use arguments originally due to Croke and Dairbekov to prove a volume rigidity theorem for some interesting locally CAT($-1$) spaces, including quotients of Fuchsian buildings and surface amalgams.
In this article, we revisit the notion of some hyperbolicity introduced by Pujals and Sambarino [A sufficient condition for robustly minimal foliations. Ergod. Th. & Dynam. Sys.26(1) (2006), 281–289]. We present a more general definition that, in particular, can be applied to the symplectic context (something that was not possible for the previous one). As an application, we construct $C^1$ robustly transitive derived from Anosov diffeomorphisms with mixed behaviour on centre leaves.
We show the existence of large $\mathcal C^1$ open sets of area-preserving endomorphisms of the two-torus which have no dominated splitting and are non-uniformly hyperbolic, meaning that Lebesgue almost every point has a positive and a negative Lyapunov exponent. The integrated Lyapunov exponents vary continuously with the dynamics in the $\mathcal C^1$ topology and can be taken as far away from zero as desired. Explicit real analytic examples are obtained by deforming linear endomorphisms, including expanding ones. The technique works in nearly every homotopy class, and the examples are stably ergodic (in fact Bernoulli), provided that the linear map has no eigenvalue of modulus one.
Let M be a smooth closed oriented surface. Gaussian thermostats on M correspond to the geodesic flows arising from metric connections, including those with non-zero torsion. These flows may not preserve any absolutely continuous measure. We prove that if two Gaussian thermostats on M with negative thermostat curvature are related by a smooth orbit equivalence isotopic to the identity, then the two background metrics are conformally equivalent via a smooth diffeomorphism of M isotopic to the identity. We also give a relationship between the thermostat forms themselves. Finally, we prove the same result for Anosov magnetic flows.
We obtain asymptotics for the average value taken by a Vassiliev invariant on knots appearing as periodic orbits of an Axiom A flow on $S^3.$ The methods used also give asymptotics for the writhe of periodic orbits. Our results are analogous to those of G. Contreras [Average linking numbers of closed orbits of hyperbolic flows. J. Lond. Math. Soc. (2)51 (1995), 614–624] for average linking numbers.
In this article, we extend, with a great deal of generality, many results regarding the Hausdorff dimension of certain dynamical Diophantine coverings and shrinking target sets associated with a conformal iterated function system (IFS) previously established under the so-called open set condition. The novelty of the result we present is that it holds regardless of any separation assumption on the underlying IFS and thus extends to a large class of IFSs the previous results obtained by Beresnevitch and Velani [A mass transference principle and the Duffin–Schaeffer conjecture for Hausdorff measures. Ann. of Math. (2)164(3) (2006), 971–992] and by Barral and Seuret [The multifractal nature of heterogeneous sums of Dirac masses. Math. Proc. Cambridge Philos. Soc.144(3) (2008), 707–727]. Moreover, it will be established that if S is conformal and satisfies mild separation assumptions (which are, for instance, satisfied for any self-similar IFS on $\mathbb {R}$ with algebraic parameters, no exact overlaps and similarity dimension smaller than $1$), then the classical result of Hill–Velani regarding the shrinking target problem associated with a conformal IFS satisfying the open set condition (and for which the Hausdorff measure was later computed by Allen and Barany [On the Hausdorff measure of shrinking target sets on self-conformal sets. Mathematika67 (2021), 807–839]) can be extended.
For a class of potentials $\psi $ satisfying a condition depending on the roof function of a suspension (semi)flow, we show an EKP inequality, which can be interpreted as a Hölder continuity property in the weak${^*}$ norm of measures, with respect to the pressure of those measures, where the Hölder exponent depends on the $L^q$-space to which $\psi $ belongs. This also captures a new type of phase transition for intermittent (semi)flows (and maps).
This paper further studies the matroid realization space of a specific deformation of the regular n-gon with its lines of symmetry. Recently, we obtained that these particular realization spaces are birational to the elliptic modular surfaces $\Xi _{1}(n)$ over the modular curve $X_1(n)$. Here, we focus on the peculiar cases when $n=7,8$ in more detail. We obtain concrete quartic surfaces in $\mathbb {P}^3$ equipped with a dominant rational self-map stemming from an operator on line arrangements, which yields K3 surfaces with a dynamical system that is semi-conjugated to the plane.
We study scaled topological entropy, scaled measure entropy, and scaled local entropy in the context of amenable group actions. In particular, a variational principle is established.
The topological structure of ‘mean dichotomy spectrum’ is shown in this article, as an extension of Sacker–Sell spectrum and non-uniform dichotomy spectrum. With regard to mean hyperbolic systems, the coexistence of expansion and contraction behaviours can lead to non-hyperbolic phenomena during evolution process. To be precise, distinct from uniform and non-uniform hyperbolic cases, error hyperbolic degree $\varepsilon(t,\tau)$ is vital to depict the spectral manifolds. As application, the reducibility theorem for mean hyperbolic systems is provided to deduce block diagonalization.
We prove a result on equilibrium measures for potentials with summable variation on arbitrary subshifts over a countable amenable group. For finite configurations v and w, if v is always replaceable by w, we obtain a bound on the measure of v depending on the measure of w and a cocycle induced by the potential. We then use this result to show that under this replaceability condition, we can obtain bounds on the Lebesgue–Radon–Nikodym derivative $d (\mu _\phi \circ \xi ) / d\mu _\phi $ for certain holonomies $\xi $ that generate the homoclinic (Gibbs) relation. As corollaries, we obtain extensions of results by Meyerovitch [Gibbs and equilibrium measures for some families of subshifts. Ergod. Th. & Dynam. Sys. 33(3) (2013), 934–953], and García-Ramos and Pavlov [Extender sets and measures of maximal entropy for subshifts. J. Lond. Math. Soc. (2)100(3) (2019), 1013–1033] to the countable amenable group subshift setting. Our methods rely on the exact tiling result for countable amenable groups by Downarowicz, Huczek, and Zhang [Tilings of amenable groups. J. Reine Angew. Math. 2019(747) (2019), 277–298] and an adapted proof technique from García-Ramos and Pavlov.
Quasigeodesic behavior of flow lines is a very useful property in the study of Anosov flows. Not every Anosov flow in dimension three is quasigeodesic. In fact, until recently, up to orbit equivalence, the only previously known examples of quasigeodesic Anosov flows were suspension flows. In a recent article, the second author proved that an Anosov flow on a hyperbolic 3-manifold is quasigeodesic if and only if it is non-$\mathbb {R}$-covered, and this result completes the classification of quasigeodesic Anosov flows on hyperbolic 3-manifolds. In this article, we prove that a new class of examples of Anosov flows are quasigeodesic. These are the first examples of quasigeodesic Anosov flows on 3-manifolds that are neither Seifert, nor solvable, nor hyperbolic. In general, it is very hard to show that a given flow is quasigeodesic and, in this article, we provide a new method to prove that an Anosov flow is quasigeodesic.