To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
If the logarithmic dimension of a Cantor-type set K is smaller than $1$, then the Whitney space $\mathcal {E}(K)$ possesses an interpolating Faber basis. For any generalized Cantor-type set K, a basis in $\mathcal {E}(K)$ can be presented by means of functions that are polynomials locally. This gives a plenty of bases in each space $\mathcal {E}(K)$. We show that these bases are quasi-equivalent.
Let $\mathrm {Lip}_0(M)$ be the space of Lipschitz functions on a complete metric space M that vanish at a base point. We prove that every normal functional in ${\mathrm {Lip}_0(M)}^*$ is weak* continuous; that is, in order to verify weak* continuity it suffices to do so for bounded monotone nets of Lipschitz functions. This solves a problem posed by N. Weaver. As an auxiliary result, we show that the series decomposition developed by N. J. Kalton for functionals in the predual of $\mathrm {Lip}_0(M)$ can be partially extended to ${\mathrm {Lip}_0(M)}^*$.
The main result is that the ellipticity and the Fredholm property of a $\Psi $DO acting on Sobolev spaces in the Weyl-Hörmander calculus are equivalent when the Hörmander metric is geodesically temperate and its associated Planck function vanishes at infinity. The proof is essentially related to the following result that we prove for geodesically temperate Hörmander metrics: If $\lambda \mapsto a_{\lambda }\in S(1,g)$ is a $\mathcal {C}^N$, $0\leq N\leq \infty $, map such that each $a_{\lambda }^w$ is invertible on $L^2$, then the mapping $\lambda \mapsto b_{\lambda }\in S(1,g)$, where $b_{\lambda }^w$ is the inverse of $a_{\lambda }^w$, is again of class $\mathcal {C}^N$. Additionally, assuming also the strong uncertainty principle for the metric, we obtain a Fedosov-Hörmander formula for the index of an elliptic operator. At the very end, we give an example to illustrate our main result.
We investigate the boundedness, compactness, invertibility and Fredholmness of weighted composition operators between Lorentz spaces. It is also shown that the classes of Fredholm and invertible weighted composition maps between Lorentz spaces coincide when the underlying measure space is nonatomic.
We discuss the notion of optimal polynomial approximants in multivariable reproducing kernel Hilbert spaces. In particular, we analyze difficulties that arise in the multivariable case which are not present in one variable, for example, a more complicated relationship between optimal approximants and orthogonal polynomials in weighted spaces. Weakly inner functions, whose optimal approximants are all constant, provide extreme cases where nontrivial orthogonal polynomials cannot be recovered from the optimal approximants. Concrete examples are presented to illustrate the general theory and are used to disprove certain natural conjectures regarding zeros of optimal approximants in several variables.
The purpose of this paper is to characterize the entire solutions of the homogeneous Helmholtz equation (solutions in ℝd) arising from the Fourier extension operator of distributions in Sobolev spaces of the sphere $H^\alpha (\mathbb {S}^{d-1}),$ with α ∈ ℝ. We present two characterizations. The first one is written in terms of certain L2-weighted norms involving real powers of the spherical Laplacian. The second one is in the spirit of the classical description of the Herglotz wave functions given by P. Hartman and C. Wilcox. For α > 0 this characterization involves a multivariable square function evaluated in a vector of entire solutions of the Helmholtz equation, while for α < 0 it is written in terms of an spherical integral operator acting as a fractional integration operator. Finally, we also characterize all the solutions that are the Fourier extension operator of distributions in the sphere.
We set up the sharp Trudinger–Moser inequality under arbitrary norms. Using this result and the $L_{p}$ Busemann-Petty centroid inequality, we will provide a new proof to the sharp affine Trudinger–Moser inequalities without using the well-known affine Pólya–Szegö inequality.
In this paper we give sufficient conditions to obtain continuity results of solutions for the so called ϕ-Laplacian Δϕ with respect to domain perturbations. We point out that this kind of results can be extended to a more general class of operators including, for instance, nonlocal nonstandard growth type operators.
The asymptotic behavior of solutions to a family of Dirichlet boundary value problems, involving differential operators in divergence form, on a domain equipped with a Finsler metric is investigated. Solutions are shown to converge uniformly to the distance function to the boundary of the domain, which takes into account the Finsler norm involved in the equation. This implies that a well-known result in the analysis of problems modeling torsional creep continues to hold in this more general setting.
We study the stability of the differential process of Rochberg and Weiss associated with an analytic family of Banach spaces obtained using the complex interpolation method for families. In the context of Köthe function spaces, we complete earlier results of Kalton (who showed that there is global bounded stability for pairs of Köthe spaces) by showing that there is global (bounded) stability for families of up to three Köthe spaces distributed in arcs on the unit circle while there is no (bounded) stability for families of four or more Köthe spaces. In the context of arbitrary pairs of Banach spaces, we present some local stability results and some global isometric stability results.
In this paper, we prove contact Poincaré and Sobolev inequalities in Heisenberg groups $\mathbb{H}^{n}$, where the word ‘contact’ is meant to stress that de Rham’s exterior differential is replaced by the exterior differential of the so-called Rumin complex $(E_{0}^{\bullet },d_{c})$, which recovers the scale invariance under the group dilations associated with the stratification of the Lie algebra of $\mathbb{H}^{n}$. In addition, we construct smoothing operators for differential forms on sub-Riemannian contact manifolds with bounded geometry, which act trivially on cohomology. For instance, this allows us to replace a closed form, up to adding a controlled exact form, with a much more regular differential form.
We give Trudinger-type inequalities for Riesz potentials of functions in Orlicz-Morrey spaces of an integral form over non-doubling metric measure spaces. Our results are new even for the doubling metric measure setting. In particular, our results improve and extend the previous results in Morrey spaces of an integral form in the Euclidean case.
We show that the spectrum of the relativistic mean curvature operator on a bounded domain Ω ⊂ ℝN (N ⩾ 1) having smooth boundary, subject to the homogeneous Dirichlet boundary condition, is exactly the interval (λ1(2), ∞), where λ1(2) stands for the principal frequency of the Laplace operator in Ω.
We completely characterize the validity of the inequality $\| u \|_{Y(\mathbb R)} \leq C \| \nabla^{m} u \|_{X(\mathbb R)}$, where X and Y are rearrangement-invariant spaces, by reducing it to a considerably simpler one-dimensional inequality. Furthermore, we fully describe the optimal rearrangement-invariant space on either side of the inequality when the space on the other side is fixed. We also solve the same problem within the environment in which the competing spaces are Orlicz spaces. A variety of examples involving customary function spaces suitable for applications is also provided.
We construct a separately continuous function $e:E\times K\rightarrow \{0,1\}$ on the product of a Baire space $E$ and a compact space $K$ such that no restriction of $e$ to any non-meagre Borel set in $E\times K$ is continuous. The function $e$ has no points of joint continuity, and, hence, it provides a negative solution of Talagrand’s problem in Talagrand [Espaces de Baire et espaces de Namioka, Math. Ann.270 (1985), 159–164].
We introduce the notion of a distributional $k$-Hessian ($k=2,\ldots ,n$) associated with fractional Sobolev functions on $\unicode[STIX]{x1D6FA}$, a smooth bounded open subset in $\mathbb{R}^{n}$. We show that the distributional $k$-Hessian is weakly continuous on the fractional Sobolev space $W^{2-2/k,k}(\unicode[STIX]{x1D6FA})$ and that the weak continuity result is optimal, that is, the distributional $k$-Hessian is well defined in $W^{s,p}(\unicode[STIX]{x1D6FA})$ if and only if $W^{s,p}(\unicode[STIX]{x1D6FA})\subseteq W^{2-2/k,k}(\unicode[STIX]{x1D6FA})$.
Our aim in this paper is to establish a generalization of Sobolev’s inequality for Riesz potentials $J_{\unicode[STIX]{x1D6FC}(\cdot )}^{\unicode[STIX]{x1D70E}}f$ of functions $f$ in Musielak–Orlicz–Morrey spaces $L^{\unicode[STIX]{x1D6F7},\unicode[STIX]{x1D705}}(X)$. As a corollary we obtain Sobolev’s inequality for double phase functionals with variable exponents.
The main result of this paper is the following: any weighted Riemannian manifold $(M,g,\unicode[STIX]{x1D707})$, i.e., a Riemannian manifold $(M,g)$ endowed with a generic non-negative Radon measure $\unicode[STIX]{x1D707}$, is infinitesimally Hilbertian, which means that its associated Sobolev space $W^{1,2}(M,g,\unicode[STIX]{x1D707})$ is a Hilbert space.
We actually prove a stronger result: the abstract tangent module (à la Gigli) associated with any weighted reversible Finsler manifold $(M,F,\unicode[STIX]{x1D707})$ can be isometrically embedded into the space of all measurable sections of the tangent bundle of $M$ that are $2$-integrable with respect to $\unicode[STIX]{x1D707}$.
By following the same approach, we also prove that all weighted (sub-Riemannian) Carnot groups are infinitesimally Hilbertian.
Our aim in this paper is to establish a generalization of Sobolev’s inequality for Riesz potentials $I_{\unicode[STIX]{x1D6FC}(\,\cdot \,),\unicode[STIX]{x1D70F}}f$ of order $\unicode[STIX]{x1D6FC}(\,\cdot \,)$ with $f\in L^{\unicode[STIX]{x1D6F7},\unicode[STIX]{x1D705},\unicode[STIX]{x1D703}}(X)$ over bounded non-doubling metric measure spaces. As a corollary we obtain Sobolev’s inequality for double phase functionals with variable exponents.
Let ℳ be a semifinite von Neumann algebra with a faithful semifinite normal trace τ. Assume that E(0, ∞) is an M-embedded fully symmetric function space having order continuous norm and is not a superset of the set of all bounded vanishing functions on (0, ∞). In this paper, we prove that the corresponding operator space E(ℳ, τ) is also M-embedded. It extends earlier results by Werner [48, Proposition 4∙1] from the particular case of symmetric ideals of bounded operators on a separable Hilbert space to the case of symmetric spaces (consisting of possibly unbounded operators) on an arbitrary semifinite von Neumann algebra. Several applications are given, e.g., the derivation problem for noncommutative Lorentz spaces ℒp,1(ℳ, τ), 1 < p < ∞, has a positive answer.