To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let φ : ℝn × [0, ∞) → [0, ∞) satisfy that φ(x, · ), for any given x ∈ ℝn, is an Orlicz function and φ( · , t) is a Muckenhoupt A∞ weight uniformly in t ∈ (0, ∞). The (weak) Musielak–Orlicz Hardy space Hφ(ℝn) (WHφ(ℝn)) generalizes both the weighted (weak) Hardy space and the (weak) Orlicz Hardy space and hence has wide generality. In this paper, two boundedness criteria for both linear operators and positive sublinear operators from Hφ(ℝn) to Hφ(ℝn) or from Hφ(ℝn) to WHφ(ℝn) are obtained. As applications, we establish the boundedness of Bochner–Riesz means from Hφ(ℝn) to Hφ(ℝn), or from Hφ(ℝn) to WHφ(ℝn) in the critical case. These results are new even when φ(x, t): = Φ(t) for all (x, t) ∈ ℝn × [0, ∞), where Φ is an Orlicz function.
We present a sufficient and necessary condition for a function module space $X$ to have the approximate hyperplane series property (AHSP). As a consequence, we have that the space ${\mathcal{C}}_{0}(L,E)$ of bounded and continuous $E$-valued mappings defined on the locally compact Hausdorff space $L$ has AHSP if and only if $E$ has AHSP.
We establish criteria for Orlicz–Besov extension/imbedding domains via (global) $n$-regular domains that generalize the known criteria for Besov extension/imbedding domains.
Our aim in this paper is to deal with integrability of maximal functions for Herz–Morrey spaces on the unit ball with variable exponent $p_{1}(\cdot )$ approaching $1$ and for double phase functionals $\unicode[STIX]{x1D6F7}_{d}(x,t)=t^{p_{1}(x)}+a(x)t^{p_{2}}$, where $a(x)^{1/p_{2}}$ is nonnegative, bounded and Hölder continuous of order $\unicode[STIX]{x1D703}\in (0,1]$ and $1/p_{2}=1-\unicode[STIX]{x1D703}/N>0$. We also establish Sobolev type inequality for Riesz potentials on the unit ball.
We prove that if $M$ is a $\text{JBW}^{\ast }$-triple and not a Cartan factor of rank two, then $M$ satisfies the Mazur–Ulam property, that is, every surjective isometry from the unit sphere of $M$ onto the unit sphere of another real Banach space $Y$ extends to a surjective real linear isometry from $M$ onto $Y$.
In this paper we characterize the boundedness on the product of Sobolev spaces Hs(𝕋) × Hs(𝕋) on the unit circle 𝕋, of the bilinear form Λb with symbol b ∈ Hs(𝕋) given by
This paper deals with the analysis of the singularities arising from the solutions of the problem ${-}\,{\rm Curl\ } F=\mu $, where F is a 3 × 3 matrix-valued Lp-function ($1\les p<2$) and μ a 3 × 3 matrix-valued Radon measure concentrated in a closed loop in Ω ⊂ ℝ3, or in a network of such loops (as, for instance, dislocation clusters as observed in single crystals). In particular, we study the topological nature of such dislocation singularities. It is shown that $F=\nabla u$, the absolutely continuous part of the distributional gradient Du of a vector-valued function u of special bounded variation. Furthermore, u can also be seen as a multi-valued field, that is, can be redefined with values in the three-dimensional flat torus 𝕋3 and hence is Sobolev-regular away from the singular loops. We then analyse the graphs of such maps represented as currents in Ω × 𝕋3 and show that their boundaries can be written in term of the measure μ. Readapting some well-known results for Cartesian currents, we recover closure and compactness properties of the class of maps with bounded curl concentrated on dislocation networks. In the spirit of previous work, we finally give some examples of variational problems where such results provide existence of solutions.
We prove optimal improvements of the Hardy inequality on the hyperbolic space. Here, optimal means that the resulting operator is critical in the sense of Devyver, Fraas, and Pinchover (2014), namely the associated inequality cannot be further improved. Such inequalities arise from more general, optimal ones valid for the operator $ P_{\lambda }:= -\Delta _{{\open H}^{N}} - \lambda $ where 0 ⩽ λ ⩽ λ1(ℍN) and λ1(ℍN) is the bottom of the L2 spectrum of $-\Delta _{{\open H}^{N}} $, a problem that had been studied in Berchio, Ganguly, and Grillo (2017) only for the operator $P_{\lambda _{1}({\open H}^{N})}$. A different, critical and new inequality on ℍN, locally of Hardy type is also shown. Such results have in fact greater generality since they are proved on general Cartan-Hadamard manifolds under curvature assumptions, possibly depending on the point. Existence/nonexistence of extremals for the related Hardy-Poincaré inequalities are also proved using concentration-compactness technique and a Liouville comparison theorem. As applications of our inequalities, we obtain an improved Rellich inequality and we derive a quantitative version of Heisenberg-Pauli-Weyl uncertainty principle for the operator $P_\lambda.$
is bounded on the Hardy spaces of the upper half-plane ${\rm {\cal H}}_a^p ({\open C}_ + )$, $p\in [1,\infty ]$. The corresponding operator norms and their applications are also given.
In this paper, we look for the weight functions (say g) that admit the following generalized Hardy-Rellich type inequality:
$$\int_\Omega g (x)u^2 dx \les C\int_\Omega \vert \Delta u \vert ^2 dx,\quad \forall u\in {\rm {\cal D}}_0^{2,2} (\Omega ),$$
for some constant C > 0, where Ω is an open set in ℝN with N ⩾ 1. We find various classes of such weight functions, depending on the dimension N and the geometry of Ω. Firstly, we use the Muckenhoupt condition for the one-dimensional weighted Hardy inequalities and a symmetrization inequality to obtain admissible weights in certain Lorentz-Zygmund spaces. Secondly, using the fundamental theorem of integration we obtain the weight functions in certain weighted Lebesgue spaces. As a consequence of our results, we obtain simple proofs for the embeddings of ${\cal D}_0^{2,2} $ into certain Lorentz-Zygmund spaces proved by Hansson and later by Brezis and Wainger.
We investigate the isomorphic structure of the Cesàro spaces and their duals, the Tandori spaces. The main result states that the Cesàro function space $\text{Ces}_{\infty }$ and its sequence counterpart $\text{ces}_{\infty }$ are isomorphic. This is rather surprising since $\text{Ces}_{\infty }$ (like Talagrand’s example) has no natural lattice predual. We prove that $\text{ces}_{\infty }$ is not isomorphic to $\ell _{\infty }$ nor is $\text{Ces}_{\infty }$ isomorphic to the Tandori space $\widetilde{L_{1}}$ with the norm $\Vert f\Vert _{\widetilde{L_{1}}}=\Vert \widetilde{f}\Vert _{L_{1}}$, where $\widetilde{f}(t):=\text{ess}\,\sup _{s\geqslant t}|f(s)|$. Our investigation also involves an examination of the Schur and Dunford–Pettis properties of Cesàro and Tandori spaces. In particular, using results of Bourgain we show that a wide class of Cesàro–Marcinkiewicz and Cesàro–Lorentz spaces have the latter property.
Let $(M^{n},g)$ be a Riemannian manifold without boundary. We study the amount of initial regularity required so that the solution to a free Schrödinger equation converges pointwise to its initial data. Assume the initial data is in $H^{\unicode[STIX]{x1D6FC}}(M)$. For hyperbolic space, the standard sphere, and the two-dimensional torus, we prove that $\unicode[STIX]{x1D6FC}>\frac{1}{2}$ is enough. For general compact manifolds, due to the lack of a local smoothing effect, it is hard to improve on the bound $\unicode[STIX]{x1D6FC}>1$ from interpolation. We managed to go below 1 for dimension ${\leqslant}$ 3. The more interesting thing is that, for a one-dimensional compact manifold, $\unicode[STIX]{x1D6FC}>\frac{1}{3}$ is sufficient.
Let Q be the open unit square in ℝ2. We prove that in a natural complete metric space of BV homeomorphisms f : Q → Q with f|∂Q = Id, residually many homeomorphisms (in the sense of Baire categories) map a null set onto a set of full measure, and vice versa. Moreover, we observe that for 1 ⩽ p < 2, the family of W1,p homemomorphisms satisfying the above property is of the first category.
In this paper, we will use optimal mass transport combining with suitable transforms to study the sharp constants and optimizers for a class of the Gagliardo–Nirenberg and Caffarelli–Kohn–Nirenberg inequalities. Moreover, we will investigate these inequalities with and without the monomial weights $x_{1}^{A_{1}} \cdots x_{N}^{A_{N}}$ on ℝN.
In the study of the spectra of algebras of holomorphic functions on a Banach space E, the bidual E″ has a central role, and the spectrum is often shown to be locally homeomorphic to E″. In this paper we consider the problem of spectra of subalgebras invariant under the action of a group (functions f such that f ○ g = f). It is natural to attempt a characterization in terms of the space of orbits E″/~ obtained from E″ through the action of the group, so we pursue this approach here and introduce an analytic structure on the spectrum in some situations. In other situations we encounter some obstacles: in some cases, the lack of structure of E″/~ itself; in others, problems of weak continuity and non-approximability of functions in the algebra. We also define a convolution operation related to the spectrum.
In this paper we discuss the range of a co-analytic Toeplitz operator. These range spaces are closely related to de Branges–Rovnyak spaces (in some cases they are equal as sets). In order to understand its structure, we explore when the range space decomposes into the range of an associated analytic Toeplitz operator and an identifiable orthogonal complement. For certain cases, we compute this orthogonal complement in terms of the kernel of a certain Toeplitz operator on the Hardy space, where we focus on when this kernel is a model space (backward shift invariant subspace). In the spirit of Ahern–Clark, we also discuss the non-tangential boundary behavior in these range spaces. These results give us further insight into the description of the range of a co-analytic Toeplitz operator as well as its orthogonal decomposition. Our Ahern–Clark type results, which are stated in a general abstract setting, will also have applications to related sub-Hardy Hilbert spaces of analytic functions such as the de Branges–Rovnyak spaces and the harmonically weighted Dirichlet spaces.
In this paper we study composition operators on Hardy–Orlicz spaces on multiply connected domains whose boundaries consist of finitely many disjoint analytic Jordan curves. We obtain a characterization of order-bounded composition operators. We also investigate weak compactness and the Dunford–Pettis property of these operators.
Let $\ell \in \mathbb{N}$ and $p\in (1,\infty ]$. In this article, the authors establish several equivalent characterizations of Sobolev spaces $W^{2\ell +2,p}(\mathbb{R}^{n})$ in terms of derivatives of ball averages. The novelty in the results of this article is that these equivalent characterizations reveal some new connections between the smoothness indices of Sobolev spaces and the derivatives on the radius of ball averages and also that, to obtain the corresponding results for higher order Sobolev spaces, the authors first establish the combinatorial equality: for any $\ell \in \mathbb{N}$ and $k\in \{0,\ldots ,\ell -1\}$, $\sum _{j=0}^{2\ell }(-1)^{j}\binom{2\ell }{j}|\ell -j|^{2k}=0$.
The geometric structure of the nonparametric statistical model of all positive densities connected by an open exponential arc and its intimate relation to Orlicz spaces give new insights to well-known financial objects which arise in exponential utility maximization problems.