To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We construct a nonseparable Banach space $\mathcal {X}$ (actually, of density continuum) such that any uncountable subset $\mathcal {Y}$ of the unit sphere of $\mathcal {X}$ contains uncountably many points distant by less than $1$ (in fact, by less then $1-\varepsilon $ for some $\varepsilon>0$). This solves in the negative the central problem of the search for a nonseparable version of Kottman’s theorem which so far has produced many deep positive results for special classes of Banach spaces and has related the global properties of the spaces to the distances between points of uncountable subsets of the unit sphere. The property of our space is strong enough to imply that it contains neither an uncountable Auerbach system nor an uncountable equilateral set. The space is a strictly convex renorming of the Johnson–Lindenstrauss space induced by an $\mathbb {R}$-embeddable almost disjoint family of subsets of $\mathbb {N}$. We also show that this special feature of the almost disjoint family is essential to obtain the above properties.
In this article, we study a generalized Bohr radius $R_{p, q}(X), p, q\in [1, \infty )$ defined for a complex Banach space X. In particular, we determine the exact value of $R_{p, q}(\mathbb {C})$ for the cases (i) $p, q\in [1, 2]$, (ii) $p\in (2, \infty ), q\in [1, 2]$, and (iii) $p, q\in [2, \infty )$. Moreover, we consider an n-variable version $R_{p, q}^n(X)$ of the quantity $R_{p, q}(X)$ and determine (i) $R_{p, q}^n(\mathcal {H})$ for an infinite-dimensional complex Hilbert space $\mathcal {H}$ and (ii) the precise asymptotic value of $R_{p, q}^n(X)$ as $n\to \infty $ for finite-dimensional X. We also study the multidimensional analog of a related concept called the p-Bohr radius. To be specific, we obtain the asymptotic value of the n-dimensional p-Bohr radius for bounded complex-valued functions, and in the vector-valued case, we provide a lower estimate for the same, which is independent of n.
where $\Delta _{\Phi }u=\text {div}(\varphi (x,|\nabla u|)\nabla u)$ for a generalized N-function $\Phi (x,t)=\int _{0}^{|t|}\varphi (x,s)s\,ds$. We consider $\Omega \subset \mathbb {R}^{N}$ to be a smooth bounded domain that contains two disjoint open regions $\Omega _N$ and $\Omega _p$ such that $\overline {\Omega _N}\cap \overline {\Omega _p}=\emptyset$. The main feature of the problem $(P)$ is that the operator $-\Delta _{\Phi }$ behaves like $-\Delta _N$ on $\Omega _N$ and $-\Delta _p$ on $\Omega _p$. We assume the nonlinearity $f:\Omega \times \mathbb {R}\to \mathbb {R}$ of two different types, but both behave like $e^{\alpha |t|^{\frac {N}{N-1}}}$ on $\Omega _N$ and $|t|^{p^{*}-2}t$ on $\Omega _p$ as $|t|$ is large enough, for some $\alpha >0$ and $p^{*}=\frac {Np}{N-p}$ being the critical Sobolev exponent for $1< p< N$. In this context, for one type of nonlinearity $f$, we provide a multiplicity of solutions in a general smooth bounded domain and for another type of nonlinearity $f$, in an annular domain $\Omega$, we establish existence of multiple solutions for the problem $(P)$ that are non-radial and rotationally non-equivalent.
We consider a class of generalized nonlocal $p$-Laplacian equations. We find some proper structural conditions to establish a version of nonlocal Harnack inequalities of weak solutions to such nonlocal problems by using the expansion of positivity and energy estimates.
We characterize zero sets for which every subset remains a zero set too in the Fock space $\mathcal {F}^p$, $1\leq p<\infty $. We are also interested in the study of a stability problem for some examples of uniqueness set with zero excess in Fock spaces.
Hardy kernels are a useful tool to define integral operators on Hilbertian spaces like $L^2(\mathbb R^+)$ or $H^2(\mathbb C^+)$. These kernels entail an algebraic $L^1$-structure which is used in this work to study the range spaces of those operators as reproducing kernel Hilbert spaces. We obtain their reproducing kernels, which in the $L^2(\mathbb R^+)$ case turn out to be Hardy kernels as well. In the $H^2(\mathbb C^+)$ scenario, the reproducing kernels are given by holomorphic extensions of Hardy kernels. Other results presented here are theorems of Paley–Wiener type, and a connection with one-sided Hilbert transforms.
In this paper, we establish a new fractional interpolation inequality for radially symmetric measurable functions on the whole space $R^{N}$ and a new compact imbedding result about radially symmetric measurable functions. We show that the best constant in the new interpolation inequality can be achieved by a radially symmetric function. As applications of this compactness result, we study the existence of ground states of the nonlinear fractional Schrödinger equation on the whole space $R^{N}$. We also prove an existence result of standing waves and prove their orbital stability.
We provide examples of infinitesimally Hilbertian, rectifiable, Ahlfors regular metric measure spaces having pmGH-tangents that are not infinitesimally Hilbertian.
Given a holomorphic self-map $\varphi $ of $\mathbb {D}$ (the open unit disc in $\mathbb {C}$), the composition operator $C_{\varphi } f = f \circ \varphi $, $f \in H^2(\mathbb {\mathbb {D}})$, defines a bounded linear operator on the Hardy space $H^2(\mathbb {\mathbb {D}})$. The model spaces are the backward shift-invariant closed subspaces of $H^2(\mathbb {\mathbb {D}})$, which are canonically associated with inner functions. In this paper, we study model spaces that are invariant under composition operators. Emphasis is put on finite-dimensional model spaces, affine transformations, and linear fractional transformations.
We study nonlinear measure data elliptic problems involving the operator of generalized Orlicz growth. Our framework embraces reflexive Orlicz spaces, as well as natural variants of variable exponent and double-phase spaces. Approximable and renormalized solutions are proven to exist and coincide for arbitrary measure datum and to be unique when for a class of data being diffuse with respect to a relevant nonstandard capacity. A capacitary characterization of diffuse measures is provided.
We present new estimates in the setting of weighted Lorentz spaces of operators satisfying a limited Rubio de Francia condition; namely $T$ is bounded on $L^{p}(v)$ for every $v$ in an strictly smaller class of weights than the Muckenhoupt class $A_p$. Important examples will be the Bochner–Riesz operators $BR_\lambda$ with $0<\lambda <{(n-1)}/2$, sparse operators, Hörmander multipliers with a limited regularity condition and rough operators with $\Omega \in L^{r}(\Sigma )$, $1 < r < \infty$.
Our aim in this paper is to establish Trudinger’s exponential integrability for Riesz potentials in weighted Morrey spaces on the half space. As an application, we obtain Trudinger’s inequality for Riesz potentials in the framework of double phase functionals.
In this paper, we develop an extremely simple method to establish the sharpened Adams-type inequalities on higher-order Sobolev spaces $W^{m,\frac {n}{m}}(\mathbb {R}^n)$ in the entire space $\mathbb {R}^n$, which can be stated as follows: Given $\Phi \left ( t\right ) =e^{t}-\underset {j=0}{\overset {n-2}{\sum }} \frac {t^{j}}{j!}$ and the Adams sharp constant $\beta _{n,m}$. Then,
for any $0<\alpha <1$. Furthermore, we construct a proper test function sequence to derive the sharpness of the exponent $\alpha $ of the above Adams inequalities. Namely, we will show that if $\alpha \ge 1$, then the above supremum is infinite.
Our argument avoids applying the complicated blow-up analysis often used in the literature to deal with such sharpened inequalities.
where $f$ satisfies a uniform VMO condition with respect to the $x$-variable and is continuous with respect to ${\bf u}$. The growth condition with respect to the gradient variable is assumed a general one.
This paper establishes the mapping properties of pseudo-differential operators and the Fourier integral operators on the weighted Morrey spaces with variable exponents and the weighted Triebel–Lizorkin–Morrey spaces with variable exponents. We obtain these results by extending the extrapolation theory to the weighted Morrey spaces with variable exponents. This extension also gives the mapping properties of Calderón–Zygmund operators on the weighted Hardy–Morrey spaces with variable exponents and the wavelet characterizations of the weighted Hardy–Morrey spaces with variable exponents.
For $1< p<\infty$ we prove an $L^{p}$-version of the generalized trace-free Korn inequality for incompatible tensor fields $P$ in $W^{1,p}_0(\operatorname {Curl}; \Omega ,\mathbb {R}^{3\times 3})$. More precisely, let $\Omega \subset \mathbb {R}^{3}$ be a bounded Lipschitz domain. Then there exists a constant $c>0$ such that
\[ \lVert{ P }\rVert_{L^{p}(\Omega,\mathbb{R}^{3\times 3})}\leq c\,\left(\lVert{\operatorname{dev} \operatorname{sym} P }\rVert_{L^{p}(\Omega,\mathbb{R}^{3\times 3})} + \lVert{ \operatorname{dev} \operatorname{Curl} P }\rVert_{L^{p}(\Omega,\mathbb{R}^{3\times 3})}\right) \]
holds for all tensor fields $P\in W^{1,p}_0(\operatorname {Curl}; \Omega ,\mathbb {R}^{3\times 3})$, i.e., for all $P\in W^{1,p} (\operatorname {Curl}; \Omega ,\mathbb {R}^{3\times 3})$ with vanishing tangential trace $P\times \nu =0$ on $\partial \Omega$ where $\nu$ denotes the outward unit normal vector field to $\partial \Omega$ and $\operatorname {dev} P : = P -\frac 13 \operatorname {tr}(P) {\cdot } {\mathbb {1}}$ denotes the deviatoric (trace-free) part of $P$. We also show the norm equivalence
\begin{align*} &\lVert{ P }\rVert_{L^{p}(\Omega,\mathbb{R}^{3\times 3})}+\lVert{ \operatorname{Curl} P }\rVert_{L^{p}(\Omega,\mathbb{R}^{3\times 3})}\\ &\quad\leq c\,\left(\lVert{P}\rVert_{L^{p}(\Omega,\mathbb{R}^{3\times 3})} + \lVert{ \operatorname{dev} \operatorname{Curl} P }\rVert_{L^{p}(\Omega,\mathbb{R}^{3\times 3})}\right) \end{align*}
for tensor fields $P\in W^{1,p}(\operatorname {Curl}; \Omega ,\mathbb {R}^{3\times 3})$. These estimates also hold true for tensor fields with vanishing tangential trace only on a relatively open (non-empty) subset $\Gamma \subseteq \partial \Omega$ of the boundary.
We construct two bounded functional calculi for sectorial operators on Banach spaces, which enhance the functional calculus for analytic Besov functions, by extending the class of functions, generalising and sharpening estimates and adapting the calculus to the angle of sectoriality. The calculi are based on appropriate reproducing formulas, they are compatible with standard functional calculi and they admit appropriate convergence lemmas and spectral mapping theorems. To achieve this, we develop the theory of associated function spaces in ways that are interesting and significant. As consequences of our calculi, we derive several well-known operator norm estimates and provide generalisations of some of them.
Based on the Gale–Ryser theorem [2, 6], for the existence of suitable $(0,1)$-matrices for different partitions of a natural number, we revisit the classical result of Lorentz [4] regarding the characterization of a plane measurable set, in terms of its cross-sections, and extend it to general measure spaces.
The paper alluded to in the title contains the following striking result: Let $I$ be the unit interval and $\Delta$ the Cantor set. If $X$ is a quasi Banach space containing no copy of $c_{0}$ which is isomorphic to a closed subspace of a space with a basis and $C(I,\,X)$ is linearly homeomorphic to $C(\Delta ,\, X)$, then $X$ is locally convex, i.e., a Banach space. We will show that Kalton result is sharp by exhibiting non-locally convex quasi Banach spaces $X$ with a basis for which $C(I,\,X)$ and $C(\Delta ,\, X)$ are isomorphic. Our examples are rather specific and actually, in all cases, $X$ is isomorphic to $C(K,\,X)$ if $K$ is a metric compactum of finite covering dimension.
Weight criteria for embedding of the weighted Sobolev–Lorentz spaces to the weighted Besov–Lorentz spaces built upon certain mixed norms and iterated rearrangement are investigated. This gives an improvement of some known Sobolev embedding. We achieve the result based on different norm inequalities for the weighted Besov–Lorentz spaces defined in some mixed norms.