To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We derive faithful inclusions of C*-algebras from a coend-type construction in unitary tensor categories. This gives rise to different potential notions of discreteness for an inclusion in the non-irreducible case and provides a unified framework that encloses the theory of compact quantum group actions. We also provide examples coming from semi-circular systems and from factorization homology. In the irreducible case, we establish conditions under which the C*-discrete and W*-discrete conditions are equivalent.
We prove that there exist finitely generated, stably finite algebras which are not linear sofic. This was left open by Arzhantseva and Păunescu in 2017.
Using probabilistic tools, we prove that any weak* continuous semigroup $(T_t)_{t \geqslant 0}$ of self-adjoint unital completely positive measurable Schur multipliers acting on the space $\mathrm {B}({\mathrm {L}}^2(X))$ of bounded operators on the Hilbert space ${\mathrm {L}}^2(X)$, where X is a suitable measure space, can be dilated by a weak* continuous group of Markov $*$-automorphisms on a bigger von Neumann algebra. We also construct a Markov dilation of these semigroups. Our results imply the boundedness of the McIntosh’s ${\mathrm {H}}^\infty $ functional calculus of the generators of these semigroups on the associated Schatten spaces and some interpolation results connected to ${\mathrm {BMO}}$-spaces. We also give an answer to a question of Steen, Todorov, and Turowska on completely positive continuous Schur multipliers.
The paper investigates the algebraic properties of weakly inverse-closed complex Banach function algebras generated by functions of bounded variation on a finite interval. It is proved that such algebras have Bass stable rank 1 and are projective-free if they do not contain nontrivial idempotents. These properties are derived from a new result on the vanishing of the second Čech cohomology group of the polynomially convex hull of a continuum of a finite linear measure described by the classical H. Alexander theorem.
We compute the generator rank of a subhomogeneous $C^*\!$-algebra in terms of the covering dimension of the pieces of its primitive ideal space corresponding to irreducible representations of a fixed dimension. We deduce that every $\mathcal {Z}$-stable approximately subhomogeneous algebra has generator rank one, which means that a generic element in such an algebra is a generator.
This leads to a strong solution of the generator problem for classifiable, simple, nuclear $C^*\!$-algebras: a generic element in each such algebra is a generator. Examples of Villadsen show that this is not the case for all separable, simple, nuclear $C^*\!$-algebras.
We demonstrate how exact structures can be placed on the additive category of right operator modules over an operator algebra in order to discuss global dimension for operator algebras. The properties of the Haagerup tensor product play a decisive role in this.
We prove that for a Banach algebra A having a bounded $\mathcal {Z}(A)$-approximate identity and for every $\mathbf {[IN]}$ group G with a weight w which is either constant on conjugacy classes or satisfies $w \geq 1$, $\mathcal {Z}(L^{1}_{w}(G) \otimes ^{\gamma } A) \cong \mathcal {Z}(L^{1}_{w}(G)) \otimes ^{\gamma } \mathcal {Z}(A)$. As an application, we discuss the conditions under which $\mathcal {Z}(L^{1}_{\omega }(G,A))$ enjoys certain Banach algebraic properties, such as weak amenability or semisimplicity.
We study the stability of the differential process of Rochberg and Weiss associated with an analytic family of Banach spaces obtained using the complex interpolation method for families. In the context of Köthe function spaces, we complete earlier results of Kalton (who showed that there is global bounded stability for pairs of Köthe spaces) by showing that there is global (bounded) stability for families of up to three Köthe spaces distributed in arcs on the unit circle while there is no (bounded) stability for families of four or more Köthe spaces. In the context of arbitrary pairs of Banach spaces, we present some local stability results and some global isometric stability results.
We study ring-theoretic (in)finiteness properties—such as Dedekind-finiteness and proper infiniteness—of ultraproducts (and more generally, reduced products) of Banach algebras.
While we characterise when an ultraproduct has these ring-theoretic properties in terms of its underlying sequence of algebras, we find that, contrary to the $C^*$-algebraic setting, it is not true in general that an ultraproduct has a ring-theoretic finiteness property if and only if “ultrafilter many” of the underlying sequence of algebras have the same property. This might appear to violate the continuous model theoretic counterpart of Łoś’s Theorem; the reason it does not is that for a general Banach algebra, the ring theoretic properties we consider cannot be verified by considering a bounded subset of the algebra of fixed bound. For Banach algebras, we construct counter-examples to show, for example, that each component Banach algebra can fail to be Dedekind-finite while the ultraproduct is Dedekind-finite, and we explain why such a counter-example is not possible for $C^*$-algebras. Finally, the related notion of having stable rank one is also studied for ultraproducts.
Recent work by Baum et al. [‘Expanders, exact crossed products, and the Baum–Connes conjecture’, Ann. K-Theory1(2) (2016), 155–208], further developed by Buss et al. [‘Exotic crossed products and the Baum–Connes conjecture’, J. reine angew. Math.740 (2018), 111–159], introduced a crossed-product functor that involves tensoring an action with a fixed action $(C,\unicode[STIX]{x1D6FE})$, then forming the image inside the crossed product of the maximal-tensor-product action. For discrete groups, we give an analogue for coaction functors. We prove that composing our tensor-product coaction functor with the full crossed product of an action reproduces their tensor-crossed-product functor. We prove that every such tensor-product coaction functor is exact, and if $(C,\unicode[STIX]{x1D6FE})$ is the action by translation on $\ell ^{\infty }(G)$, we prove that the associated tensor-product coaction functor is minimal, thereby recovering the analogous result by the above authors. Finally, we discuss the connection with the $E$-ization functor we defined earlier, where $E$ is a large ideal of $B(G)$.
A category structure for ordered Bratteli diagrams is proposed in which isomorphism coincides with the notion of equivalence of Herman, Putnam, and Skau. It is shown that the natural one-to-one correspondence between the category of Cantor minimal systems and the category of simple properly ordered Bratteli diagrams is in fact an equivalence of categories. This gives a Bratteli–Vershik model for factor maps between Cantor minimal systems. We give a construction of factor maps between Cantor minimal systems in terms of suitable maps (called premorphisms) between the corresponding ordered Bratteli diagrams, and we show that every factor map between two Cantor minimal systems is obtained in this way. Moreover, solving a natural question, we are able to characterize Glasner and Weiss’s notion of weak orbit equivalence of Cantor minimal systems in terms of the corresponding C*-algebra crossed products.
This paper concerns the study of the global structure of measure-preserving actions of countable groups on standard probability spaces. Weak containment is a hierarchical notion of complexity of such actions, motivated by an analogous concept in the theory of unitary representations. This concept gives rise to an associated notion of equivalence of actions, called weak equivalence, which is much coarser than the notion of isomorphism (conjugacy). It is well understood now that, in general, isomorphism is a very complex notion, a fact which manifests itself, for example, in the lack of any reasonable structure in the space of actions modulo isomorphism. On the other hand, the space of weak equivalence classes is quite well behaved. Another interesting fact that relates to the study of weak containment is that many important parameters associated with actions, such as the type, cost, and combinatorial parameters, turn out to be invariants of weak equivalence and in fact exhibit desirable monotonicity properties with respect to the pre-order of weak containment, a fact that can be useful in certain applications. There has been quite a lot of activity in this area in the last few years, and our goal in this paper is to provide a survey of this work.
We prove completeness for the main examples of infinite-dimensional Lie groups and some related topological groups. Consider a sequence $G_{1}\subseteq G_{2}\subseteq \cdots \,$ of topological groups $G_{n}$ n such that $G_{n}$ is a subgroup of $G_{n+1}$ and the latter induces the given topology on $G_{n}$, for each $n\in \mathbb{N}$. Let $G$ be the direct limit of the sequence in the category of topological groups. We show that $G$ induces the given topology on each $G_{n}$ whenever $\cup _{n\in \mathbb{N}}V_{1}V_{2}\cdots V_{n}$ is an identity neighbourhood in $G$ for all identity neighbourhoods $V_{n}\subseteq G_{n}$. If, moreover, each $G_{n}$ is complete, then $G$ is complete. We also show that the weak direct product $\oplus _{j\in J}G_{j}$ is complete for each family $(G_{j})_{j\in J}$ of complete Lie groups $G_{j}$. As a consequence, every strict direct limit $G=\cup _{n\in \mathbb{N}}G_{n}$ of finite-dimensional Lie groups is complete, as well as the diffeomorphism group $\text{Diff}_{c}(M)$ of a paracompact finite-dimensional smooth manifold $M$ and the test function group $C_{c}^{k}(M,H)$, for each $k\in \mathbb{N}_{0}\cup \{\infty \}$ and complete Lie group $H$ modelled on a complete locally convex space.
We present a new construction of crossed-product duality for maximal coactions that uses Fischer’s work on maximalizations. Given a group $G$ and a coaction $(A,\unicode[STIX]{x1D6FF})$ we define a generalized fixed-point algebra as a certain subalgebra of $M(A\rtimes _{\unicode[STIX]{x1D6FF}}G\rtimes _{\,\widehat{\unicode[STIX]{x1D6FF}}}G)$, and recover the coaction via this double crossed product. Our goal is to formulate this duality in a category-theoretic context, and one advantage of our construction is that it breaks down into parts that are easy to handle in this regard. We first explain this for the category of nondegenerate *-homomorphisms and then, analogously, for the category of $C^{\ast }$-correspondences. Also, we outline partial results for the ‘outer’ category, which has been studied previously by the authors.
We prove that an operator system is (min, ess)-nuclear if its $C^{\ast }$-envelope is nuclear. This allows us to deduce that an operator system associated to a generating set of a countable discrete group by Farenick et al. [‘Operator systems from discrete groups’, Comm. Math. Phys.329(1) (2014), 207–238] is (min, ess)-nuclear if and only if the group is amenable. We also make a detailed comparison between ess and other operator system tensor products and show that an operator system associated to a minimal generating set of a finitely generated discrete group (respectively, a finite graph) is (min, max)-nuclear if and only if the group is of order less than or equal to three (respectively, every component of the graph is complete).
Let ${\it\varphi}$ be a homomorphism from a Banach algebra ${\mathcal{B}}$ to a Banach algebra ${\mathcal{A}}$. We define a multiplication on the Cartesian product space ${\mathcal{A}}\times {\mathcal{B}}$ and obtain a new Banach algebra ${\mathcal{A}}\times _{{\it\varphi}}{\mathcal{B}}$. We show that biprojectivity as well as biflatness of ${\mathcal{A}}\times _{{\it\varphi}}{\mathcal{B}}$ are stable with respect to ${\it\varphi}$.
We define the class of weakly approximately divisible unital ${C}^{\ast } $-algebras and show that this class is closed under direct sums, direct limits, any tensor product with any ${C}^{\ast } $-algebra, and quotients. A nuclear ${C}^{\ast } $-algebra is weakly approximately divisible if and only if it has no finite-dimensional representations. We also show that Pisier’s similarity degree of a weakly approximately divisible ${C}^{\ast } $-algebra is at most five.
In the third and latest paper in this series, we recover the imprimitivity theorems of Mansfield and Fell using our technique of Fell bundles over groupoids. Also, we apply the Rieffel surjection of the first paper in the series to relate our version of Mansfield’s theorem to that of an Huef and Raeburn, and to give an automatic amenability result for certain transformation Fell bundles.