We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper we study the existence of Lebesgue densities of one-dimensional Lévy processes. Equivalently, we show the absolute continuity of the distributions of one-dimensional Lévy processes. Compared with the previous literature, we consider Lévy processes with Lévy symbols of a logarithmic behavior at ∞.
We propose a hybrid spectral element method for fractional two-point boundary value problem (FBVPs) involving both Caputo and Riemann-Liouville (RL) fractional derivatives. We first formulate these FBVPs as a second kind Volterra integral equation (VIEs) with weakly singular kernel, following a similar procedure in [16]. We then design a hybrid spectral element method with generalized Jacobi functions and Legendre polynomials as basis functions. The use of generalized Jacobi functions allow us to deal with the usual singularity of solutions at t = 0. We establish the existence and uniqueness of the numerical solution, and derive a hptype error estimates under L2(I)-norm for the transformed VIEs. Numerical results are provided to show the effectiveness of the proposed methods.
Suppose that the function $f$ is analytic in the open unit disk $\unicode[STIX]{x1D6E5}$ in the complex plane. For each $\unicode[STIX]{x1D6FC}>0$ a function $f^{[\unicode[STIX]{x1D6FC}]}$ is defined as the Hadamard product of $f$ with a certain power function. The function $f^{[\unicode[STIX]{x1D6FC}]}$ compares with the fractional derivative of $f$ of order $\unicode[STIX]{x1D6FC}$. Suppose that $f^{[\unicode[STIX]{x1D6FC}]}$ has a limit at some point $z_{0}$ on the boundary of $\unicode[STIX]{x1D6E5}$. Then $w_{0}=\lim _{z\rightarrow z_{0}}f(z)$ exists. Suppose that $\unicode[STIX]{x1D6F7}$ is analytic in $f(\unicode[STIX]{x1D6E5})$ and at $w_{0}$. We show that if $g=\unicode[STIX]{x1D6F7}(f)$ then $g^{[\unicode[STIX]{x1D6FC}]}$ has a limit at $z_{0}$.
We present a new connection between the Hele-Shaw flow, also known as two-dimensional Laplacian growth, and the theory of holomorphic discs with boundary contained in a totally real submanifold. Using this, we prove short-time existence and uniqueness of the Hele-Shaw flow with varying permeability both when starting from a single point and also when starting from a smooth Jordan domain. Applying the same ideas, we prove that the moduli space of smooth quadrature domains is a smooth manifold whose dimension we also calculate, and we give a local existence theorem for the inverse potential problem in the plane.
We show that a computable and conformal map of the unit disk onto a bounded domain $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}D$ has a computable boundary extension if $D$ has a computable boundary connectivity function.
Extreme points of compact, convex integral families of analytic functions are investigated. Knowledge about extreme points provides a valuable tool in the optimization of linear extremal problems. The functions studied are determined by a two-parameter collection of kernel functions integrated against measures on the torus. For specific choices of the parameters many families from classical geometric function theory are included. These families include the closed convex hull of the derivatives of normalized close-to-convex functions, the ratio of starlike functions of different orders, as well as many others. The main result introduces a surprising new class of extreme points.
For a homogeneous random walk in the quarter plane with nearest-neighbor transitions, starting from some state (i0,j0), we study the event that the walk reaches the vertical axis, before reaching the horizontal axis. We derive a certain integral representation for the probability of this event, and an asymptotic expression for the case when i0 becomes large, a situation in which the event becomes highly unlikely. The integral representation follows from the solution of a boundary value problem and involves a conformal gluing function. The asymptotic expression follows from the asymptotic evaluation of this integral. Our results find applications in a model for nucleosome shifting, the voter model, and the asymmetric exclusion process.
In the recent paper by Pakovich and Muzychuk [Solution of the polynomial moment problem, Proc. Lond. Math. Soc. (3) 99 (2009), 633–657] it was shown that any solution of ‘the polynomial moment problem’, which asks to describe polynomials $Q$ orthogonal to all powers of a given polynomial $P$ on a segment, may be obtained as a sum of so-called ‘reducible’ solutions related to different decompositions of $P$ into a composition of two polynomials of lower degrees. However, the methods of that paper do not permit us to estimate the number of necessary reducible solutions or to describe them explicitly. In this paper we provide a description of polynomial solutions of the functional equation $P_1\circ W_1=P_2\circ W_2=\cdots =P_r\circ W_r,$and on this base describe solutions of the polynomial moment problem in an explicit form suitable for applications.
Let 𝕂⊂ℂ be a number field. We show how to compute 𝕂-irrationality measures of a number ξ∉𝕂, and 𝕂-nonquadraticity measures of ξ if [𝕂(ξ):𝕂]>2. By applying the saddle point method to a family of double complex integrals, we prove ℚ(α)-irrationality measures and ℚ(α)-nonquadraticity measures of log α for several algebraic numbers α∈ℂ, improving earlier results due to Amoroso and the second-named author.
The main result shows that a small perturbation of a univalent function is again a univalent function, hence a univalent function has a neighbourhood consisting entirely of univalent functions. For the particular choice of a linear function in the hypothesis of the main theorem, we obtain a corollary which is equivalent to the classical Noshiro–Warschawski–Wolff univalence criterion. We also present an application of the main result in terms of Taylor series, and we show that the hypothesis of our main result is sharp.
We complete the investigation of growth properties of analytic functions connected with the Nevanlinna parametrization of the solutions of an indeterminate strong Hamburger moment problem.
This note contains a proof of the fact that a Jordan curve in ℝ2 with a continuous tangent line at each point admits a regular reparameterization. We extend the result both to more general curves in ℝn and to higher orders of differentiability.
For α > 0 let α denote the set of functions which can be expressed where μ is a complex-valued Borel measure on the unit circle. We show that if f is an analytic function in Δ = {z ∈ : |z| < 1} and there are two nonparallel rays in /f(Δ) which do not meet, then f ∈ α where απ denotes the largest of the two angles determined by the rays. Also if the range of a function analytic in Δ is contained in an angular wedge of opening απ and 1 < α < 2, then f ∈ α.
Inspired by a statement of W. Luh asserting the existence of entire functions having together with all their derivatives and antiderivatives some kind of additive universality or multiplicative universality on certain compact subsets of the complex plane or of, respectively, the punctured complex plane, we introduce in this paper the new concept of U-operators, which are defined on the space of entire functions. Concrete examples, including differential and antidifferential operators, composition, multiplication and shift operators, are studied. A result due to Luh, Martirosian and Müller about the existence of universal entire functions with gap power series is also strengthened.
We derive in this paper closed formulae for the joint probability generating function of the number of customers in the two FIFO queues of a generalized processor-sharing (GPS) system with two classes of customers arriving according to Poisson processes and requiring exponential service times. In contrast to previous studies published on the GPS system, we show that it is possible to establish explicit expressions for the generating functions of the number of customers in each queue without calling for the formulation of a Riemann–Hilbert problem. We specifically prove that the problem of determining the unknown functions due to the reflecting conditions on the boundaries of the positive quarter plane can be reduced to a Poisson equation. The explicit formulae are then used to derive some characteristics of the GPS system (in particular the tails of the probability distributions of the numbers of customers in each queue).
This paper studies the concept of strongly omnipresent operators that was recently introduced by the first two authors. An operator T on the space H(G) of holomorphic functions on a complex domain G is called strongly omnipresent whenever the set of T-monsters is residual in H(G), and a T-monster is a function f such that Tf exhibits an extremely ‘wild’ behaviour near the boundary. We obtain sufficient conditions under which an operator is strongly omnipresent, in particular, we show that every onto linear operator is strongly omnipresent. Using these criteria we completely characterize strongly omnipresent composition and multiplication operators.
In this paper we prove a number of results on Cauchy transforms of generalized type given by Borel measures supported on the class of analytic functions mapping the unit disc into the unit disk. We also give a BMOA characterization using these families.
Hilbert spaces of analytic functions generated by rotationally symmetric measures on disks and annuli are studied. A domination relation between function norm and weighted sums of integral means on circles is developed. The function norm and the weighted sum take the same value for a specified class of polynomials. This class can be varied according to two parameters. Parts of the construction carry over to other Banach spaces of analytic of harmonic functions. Counterexamples illuminating properties of the complex method of interpolation appear as a byproduct.