To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove that if $G_{P}$ is a finitely constrained group of binary rooted tree automorphisms (a group binary tree subshift of finite type) defined by an essential pattern group $P$ of pattern size $d$, $d\geq 2$, and if $G_{P}$ has maximal Hausdorff dimension (equal to $1-1/2^{d-1}$), then $G_{P}$ is not topologically finitely generated. We describe precisely all essential pattern groups $P$ that yield finitely constrained groups with maximal Hausdorff dimension. For a given size $d$, $d\geq 2$, there are exactly $2^{d-1}$ such pattern groups and they are all maximal in the group of automorphisms of the finite rooted regular tree of depth $d$.
The work of L. G. (Laci) Kovács (1936–2013) gave us a deeper understanding of permutation groups, especially in the O’Nan–Scott theory of primitive groups. We review his contribution to this field.
We extend to soluble $\text{FC}^{\ast }$-groups, the class of generalised FC-groups introduced in de Giovanni et al. [‘Groups with restricted conjugacy classes’, Serdica Math. J.28(3) (2002), 241–254], the characterisation of finite soluble T-groups obtained recently in Kaplan [‘On T-groups, supersolvable groups, and maximal subgroups’, Arch. Math. (Basel)96(1) (2011), 19–25].
We explore transversals of finite index subgroups of finitely generated groups. We show that when $H$ is a subgroup of a rank-$n$ group $G$ and $H$ has index at least $n$ in $G$, we can construct a left transversal for $H$ which contains a generating set of size $n$ for $G$; this construction is algorithmic when $G$ is finitely presented. We also show that, in the case where $G$ has rank $n\leq 3$, there is a simultaneous left–right transversal for $H$ which contains a generating set of size $n$ for $G$. We finish by showing that if $H$ is a subgroup of a rank-$n$ group $G$ with index less than $3\cdot 2^{n-1}$, and $H$ contains no primitive elements of $G$, then $H$ is normal in $G$ and $G/H\cong C_{2}^{n}$.
We study the injective hulls of faithful characteristic zero finite dimensional irreducible representations of uniform nilpotent pro-p groups, seen as modules over their corresponding Iwasawa algebras. Using this we prove that the kernels of these representations are classically localisable.
We present the results of computer experiments suggesting that the probability that a random multiword in a free group is virtually geometric decays to zero exponentially quickly in the length of the multiword. We also prove this fact.
There exist infinite finitely presented torsion-free groups G such that Aut(G) and Out(G) are torsion free but G has an automorphism sending some non-trivial element to its inverse.
Let $\mathbb{A}=(A,+)$ be a (possibly non-commutative) semigroup. For $Z\subseteq A$, we define $Z^{\times }:=Z\cap \mathbb{A}^{\times }$, where $\mathbb{A}^{\times }$ is the set of the units of $\mathbb{A}$ and
The paper investigates some properties of ${\it\gamma}(\cdot )$ and shows the following extension of the Cauchy–Davenport theorem: if $\mathbb{A}$ is cancellative and $X,Y\subseteq A$, then
This implies a generalization of Kemperman’s inequality for torsion-free groups and strengthens another extension of the Cauchy–Davenport theorem, where $\mathbb{A}$ is a group and ${\it\gamma}(X+Y)$ in the above is replaced by the infimum of $|S|$ as $S$ ranges over the non-trivial subgroups of $\mathbb{A}$ (Hamidoune–Károlyi theorem).
Podoski and Szegedy [‘On finite groups whose derived subgroup has bounded rank’, Israel J. Math.178 (2010), 51–60] proved that for a finite group $G$ with rank $r$, the inequality $[G:Z_{2}(G)]\leq |G^{\prime }|^{2r}$ holds. In this paper we omit the finiteness condition on $G$ and show that groups with finite derived subgroup satisfy the same inequality. We also construct an $n$-capable group which is not $(n+1)$-capable for every $n\in \mathbf{N}$.
We prove that the groups presented by finite convergent monadic rewriting systems with generators of finite order are exactly the free products of finitely many finite groups, thereby confirming Gilman’s conjecture in a special case. We also prove that the finite cyclic groups of order at least three are the only finite groups admitting a presentation by more than one finite convergent monadic rewriting system (up to relabelling), and these admit presentation by exactly two such rewriting systems.
Let $S$ be a finitely generated pro-$p$ group. Let ${\mathcal{E}}_{p^{\prime }}(S)$ be the class of profinite groups $G$ that have $S$ as a Sylow subgroup, and such that $S$ intersects nontrivially with every nontrivial normal subgroup of $G$. In this paper, we investigate whether or not there is a bound on $|G:S|$ for $G\in {\mathcal{E}}_{p^{\prime }}(S)$. For instance, we give an example where ${\mathcal{E}}_{p^{\prime }}(S)$ contains an infinite ascending chain of soluble groups, and on the other hand show that $|G:S|$ is bounded in the case where $S$ is just infinite.
We construct cocompact lattices Γ'0 < Γ0 in the group G = PGLd$({\mathbb{F}_q(\!(t)\!)\!})$ which are type-preserving and act transitively on the set of vertices of each type in the building Δ associated to G. These lattices are commensurable with the lattices of Cartwright–Steger Isr. J. Math.103 (1998), 125–140. The stabiliser of each vertex in Γ'0 is a Singer cycle and the stabiliser of each vertex in Γ0 is isomorphic to the normaliser of a Singer cycle in PGLd(q). We show that the intersections of Γ'0 and Γ0 with PSLd$({\mathbb{F}_q(\!(t)\!)\!})$ are lattices in PSLd$({\mathbb{F}_q(\!(t)\!)\!})$, and identify the pairs (d, q) such that the entire lattice Γ'0 or Γ0 is contained in PSLd$({\mathbb{F}_q(\!(t)\!)\!})$. Finally we discuss minimality of covolumes of cocompact lattices in SL3$({\mathbb{F}_q(\!(t)\!)\!})$. Our proofs combine the construction of Cartwright–Steger Isr. J. Math.103 (1998), 125–140 with results about Singer cycles and their normalisers, and geometric arguments.
Given two finitely generated groups that coarsely embed into a Hilbert space, it is known that their wreath product also embeds coarsely into a Hilbert space. We introduce a wreath product construction for general metric spaces $X,Y,Z$ and derive a condition, called the (${\it\delta}$-polynomial) path lifting property, such that coarse embeddability of $X,Y$ and $Z$ implies coarse embeddability of $X\wr _{Z}Y$. We also give bounds on the compression of $X\wr _{Z}Y$ in terms of ${\it\delta}$ and the compressions of $X,Y$ and $Z$.
We consider models of random groups in which the typical group is of intermediate rank (in particular, it is not hyperbolic). These models are parallel to Gromov’s well-known constructions, and include for example a ‘density model’ for groups of intermediate rank. The main novelty is the higher rank nature of the random groups. They are randomizations of certain families of lattices in algebraic groups (of rank 2) over local fields.
Let $G$ be a finite group, let ${\it\pi}(G)$ be the set of prime divisors of $|G|$ and let ${\rm\Gamma}(G)$ be the prime graph of $G$. This graph has vertex set ${\it\pi}(G)$, and two vertices $r$ and $s$ are adjacent if and only if $G$ contains an element of order $rs$. Many properties of these graphs have been studied in recent years, with a particular focus on the prime graphs of finite simple groups. In this note, we determine the pairs $(G,H)$, where $G$ is simple and $H$ is a proper subgroup of $G$ such that ${\rm\Gamma}(G)={\rm\Gamma}(H)$.
Let $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}w$ be a multilinear commutator word, that is, a commutator of weight $n$ in $n$ different group variables. It is proved that if $G$ is a profinite group in which all pronilpotent subgroups generated by $w$-values are periodic, then the verbal subgroup $w(G)$ is locally finite.