To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $w$ be a group-word. For a group $G$, let $G_{w}$ denote the set of all $w$-values in $G$ and let $w(G)$ denote the verbal subgroup of $G$ corresponding to $w$. The group $G$ is an $FC(w)$-group if the set of conjugates $x^{G_{w}}$ is finite for all $x\in G$. It is known that if $w$ is a concise word, then $G$ is an $FC(w)$-group if and only if $w(G)$ is $FC$-embedded in $G$, that is, the conjugacy class $x^{w(G)}$ is finite for all $x\in G$. There are examples showing that this is no longer true if $w$ is not concise. In the present paper, for an arbitrary word $w$, we show that if $G$ is an $FC(w)$-group, then the commutator subgroup $w(G)^{\prime }$ is $FC$-embedded in $G$. We also establish the analogous result for $BFC(w)$-groups, that is, groups in which the sets $x^{G_{w}}$ are boundedly finite.
We use the structure lattice, introduced in Part I, to undertake a systematic study of the class $\mathscr{S}$ consisting of compactly generated, topologically simple, totally disconnected locally compact groups that are nondiscrete. Given $G\in \mathscr{S}$, we show that compact open subgroups of $G$ involve finitely many isomorphism types of composition factors, and do not have any soluble normal subgroup other than the trivial one. By results of Part I, this implies that the centralizer lattice and local decomposition lattice of $G$ are Boolean algebras. We show that the $G$-action on the Stone space of those Boolean algebras is minimal, strongly proximal, and microsupported. Building upon those results, we obtain partial answers to the following key problems: Are all groups in $\mathscr{S}$ abstractly simple? Can a group in $\mathscr{S}$ be amenable? Can a group in $\mathscr{S}$ be such that the contraction groups of all of its elements are trivial?
Let $G$ be a totally disconnected, locally compact group. A closed subgroup of $G$ is locally normal if its normalizer is open in $G$. We begin an investigation of the structure of the family of closed locally normal subgroups of $G$. Modulo commensurability, this family forms a modular lattice ${\mathcal{L}}{\mathcal{N}}(G)$, called the structure lattice of $G$. We show that $G$ admits a canonical maximal quotient $H$ for which the quasicentre and the abelian locally normal subgroups are trivial. In this situation ${\mathcal{L}}{\mathcal{N}}(H)$ has a canonical subset called the centralizer lattice, forming a Boolean algebra whose elements correspond to centralizers of locally normal subgroups. If $H$ is second-countable and acts faithfully on its centralizer lattice, we show that the topology of $H$ is determined by its algebraic structure (and thus invariant by every abstract group automorphism), and also that the action on the Stone space of the centralizer lattice is universal for a class of actions on profinite spaces. Most of the material is developed in the more general framework of Hecke pairs.
Let $\unicode[STIX]{x1D70E}=\{\unicode[STIX]{x1D70E}_{i}\mid i\in I\}$ be a partition of the set of all primes $\mathbb{P}$. Let $\unicode[STIX]{x1D70E}_{0}\in \unicode[STIX]{x1D6F1}\subseteq \unicode[STIX]{x1D70E}$ and let $\mathfrak{I}$ be a class of finite $\unicode[STIX]{x1D70E}_{0}$-groups which is closed under extensions, epimorphic images and subgroups. We say that a finite group $G$ is $\unicode[STIX]{x1D6F1}_{\mathfrak{I}}$-primary provided $G$ is either an $\mathfrak{I}$-group or a $\unicode[STIX]{x1D70E}_{i}$-group for some $\unicode[STIX]{x1D70E}_{i}\in \unicode[STIX]{x1D6F1}\setminus \{\unicode[STIX]{x1D70E}_{0}\}$ and we say that a subgroup $A$ of an arbitrary group $G^{\ast }$ is $\unicode[STIX]{x1D6F1}_{\mathfrak{I}}$-subnormal in $G^{\ast }$ if there is a subgroup chain $A=A_{0}\leq A_{1}\leq \cdots \leq A_{t}=G^{\ast }$ such that either $A_{i-1}\unlhd A_{i}$ or $A_{i}/(A_{i-1})_{A_{i}}$ is $\unicode[STIX]{x1D6F1}_{\mathfrak{I}}$-primary for all $i=1,\ldots ,t$. We prove that the set ${\mathcal{L}}_{\unicode[STIX]{x1D6F1}_{\mathfrak{I}}}(G)$ of all $\unicode[STIX]{x1D6F1}_{\mathfrak{I}}$-subnormal subgroups of $G$ forms a sublattice of the lattice of all subgroups of $G$ and we describe the conditions under which the lattice ${\mathcal{L}}_{\unicode[STIX]{x1D6F1}_{\mathfrak{I}}}(G)$ is modular.
When $G$ is a finite solvable group, we prove that $|G|$ can be bounded by a function in the number of irreducible characters with values in fields where $\mathbb{Q}$ is extended by prime power roots of unity. This gives a character theory analog for solvable groups of a theorem of Héthelyi and Külshammer that bounds the order of a finite group in terms of the number of conjugacy classes of elements of prime power order. In particular, we obtain for solvable groups a generalization of Landau’s theorem.
Intersection growth concerns the asymptotic behaviour of the index of the intersection of all subgroups of a group that have index at most n. In this paper we show that the intersection growth of some groups may not be a nicely behaved function by showing the following seemingly contradictory results: (a) for any group G the intersection growth function iG(n) is super linear infinitely often, and (b) for any non-decreasing unbounded function f there exists a group G such that the graph of iG is below the one of f infinitely often.
A group $G$ is said to have the $T$-property (or to be a $T$-group) if all its subnormal subgroups are normal, that is, if normality in $G$ is a transitive relation. The aim of this paper is to investigate the behaviour of uncountable groups of cardinality $\aleph$ whose proper subgroups of cardinality $\aleph$ have a transitive normality relation. It is proved that such a group $G$ is a $T$-group (and all its subgroups have the same property) provided that $G$ has an ascending subnormal series with abelian factors. Moreover, it is shown that if $G$ is an uncountable soluble group of cardinality $\aleph$ whose proper normal subgroups of cardinality $\aleph$ have the $T$-property, then every subnormal subgroup of $G$ has only finitely many conjugates.
Some classes of finitely generated hyperabelian groups defined in terms of semipermutability and S-semipermutability are studied in the paper. The classification of finitely generated hyperabelian groups all of whose finite quotients are PST-groups recently obtained by Robinson is behind our results. An alternative proof of such a classification is also included in the paper.
A class of abelian topological groups was previously defined to be a variety of topological groups with coproducts if it is closed under forming subgroups, quotients, products and coproducts in the category of all abelian topological groups and continuous homomorphisms. This extended research on varieties of topological groups initiated by the second author. The key to describing varieties of topological groups generated by various classes was proving that all topological groups in the variety are a quotient of a subgroup of a product of groups in the generating class. This paper analyses generating varieties of topological groups with coproducts. It focuses on the interplay between forming products and coproducts. It is proved that the variety of topological groups with coproducts generated by all discrete groups contains topological groups which cannot be expressed as a quotient of a subgroup of a product of a coproduct of discrete groups. It is proved that the variety of topological groups with coproducts generated by any infinite-dimensional Hilbert space contains all infinite-dimensional Hilbert spaces, answering an open question. This contrasts with the result that a variety of topological groups generated by a topological group does not contain any infinite-dimensional Hilbert space of greater cardinality.
Given a commutative complete local noetherian ring $A$ with finite residue field $\boldsymbol{k}$, we show that there is a topologically finitely generated profinite group $\unicode[STIX]{x1D6E4}$ and an absolutely irreducible continuous representation $\overline{\unicode[STIX]{x1D70C}}:\unicode[STIX]{x1D6E4}\rightarrow \text{GL}_{n}(\boldsymbol{k})$ such that $A$ is a universal deformation ring for $\unicode[STIX]{x1D6E4},\overline{\unicode[STIX]{x1D70C}}$.
Let $G$ be a finite group and let $N$ be a normal subgroup of $G$. We determine the structure of $N$ when the diameter of the graph associated to the $G$-conjugacy classes contained in $N$ is as large as possible, that is, equal to three.
The point-line collinearity graph ${\mathcal{G}}$ of the maximal 2-local geometry for the largest simple Fischer group, $Fi_{24}^{\prime }$, is extensively analysed. For an arbitrary vertex $a$ of ${\mathcal{G}}$, the $i\text{th}$-disc of $a$ is described in detail. As a consequence, it follows that ${\mathcal{G}}$ has diameter $5$. The collapsed adjacency matrix of ${\mathcal{G}}$ is given as well as accompanying computer files which contain a wealth of data about ${\mathcal{G}}$.
We prove that if $G_{P}$ is a finitely constrained group of binary rooted tree automorphisms (a group binary tree subshift of finite type) defined by an essential pattern group $P$ of pattern size $d$, $d\geq 2$, and if $G_{P}$ has maximal Hausdorff dimension (equal to $1-1/2^{d-1}$), then $G_{P}$ is not topologically finitely generated. We describe precisely all essential pattern groups $P$ that yield finitely constrained groups with maximal Hausdorff dimension. For a given size $d$, $d\geq 2$, there are exactly $2^{d-1}$ such pattern groups and they are all maximal in the group of automorphisms of the finite rooted regular tree of depth $d$.
The work of L. G. (Laci) Kovács (1936–2013) gave us a deeper understanding of permutation groups, especially in the O’Nan–Scott theory of primitive groups. We review his contribution to this field.
We extend to soluble $\text{FC}^{\ast }$-groups, the class of generalised FC-groups introduced in de Giovanni et al. [‘Groups with restricted conjugacy classes’, Serdica Math. J.28(3) (2002), 241–254], the characterisation of finite soluble T-groups obtained recently in Kaplan [‘On T-groups, supersolvable groups, and maximal subgroups’, Arch. Math. (Basel)96(1) (2011), 19–25].
We explore transversals of finite index subgroups of finitely generated groups. We show that when $H$ is a subgroup of a rank-$n$ group $G$ and $H$ has index at least $n$ in $G$, we can construct a left transversal for $H$ which contains a generating set of size $n$ for $G$; this construction is algorithmic when $G$ is finitely presented. We also show that, in the case where $G$ has rank $n\leq 3$, there is a simultaneous left–right transversal for $H$ which contains a generating set of size $n$ for $G$. We finish by showing that if $H$ is a subgroup of a rank-$n$ group $G$ with index less than $3\cdot 2^{n-1}$, and $H$ contains no primitive elements of $G$, then $H$ is normal in $G$ and $G/H\cong C_{2}^{n}$.