To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We compare the marked length spectra of some pairs of proper and cocompact cubical actions of a nonvirtually cyclic group on $\mathrm {CAT}(0)$ cube complexes. The cubulations are required to be virtually co-special, have the same sets of convex-cocompact subgroups, and admit a contracting element. There are many groups for which these conditions are always fulfilled for any pair of cubulations, including nonelementary cubulable hyperbolic groups, many cubulable relatively hyperbolic groups, and many right-angled Artin and Coxeter groups.
For these pairs of cubulations, we study the Manhattan curve associated to their combinatorial metrics. We prove that this curve is analytic and convex, and a straight line if and only if the marked length spectra are homothetic. The same result holds if we consider invariant combinatorial metrics in which the lengths of the edges are not necessarily one. In addition, for their standard combinatorial metrics, we prove a large deviations theorem with shrinking intervals for their marked length spectra. We deduce the same result for pairs of word metrics on hyperbolic groups.
The main tool is the construction of a finite-state automaton that simultaneously encodes the marked length spectra of both cubulations in a coherent way, in analogy with results about (bi)combable functions on hyperbolic groups by Calegari-Fujiwara [14]. The existence of this automaton allows us to apply the machinery of thermodynamic formalism for suspension flows over subshifts of finite type, from which we deduce our results.
Let $G = K \rtimes \langle t \rangle $ be a finitely generated group where K is abelian and $\langle t\rangle$ is the infinite cyclic group. Let R be a finite symmetric subset of K such that $S = \{ (r,1),(0,t^{\pm 1}) \mid r \in R \}$ is a generating set of G. We prove that the spherical conjugacy ratio, and hence the conjugacy ratio, of G with respect to S is 0 unless G is virtually abelian, confirming a conjecture of Ciobanu, Cox and Martino in this case. We also show that the Baumslag–Solitar group $\mathrm{BS}(1,k)$, $k\geq 2$, has a one-sided Følner sequence F such that the conjugacy ratio with respect to F is non-zero, even though $\mathrm{BS}(1,k)$ is not virtually abelian. This is in contrast to two-sided Følner sequences, where Tointon showed that the conjugacy ratio with respect to a two-sided Følner sequence is positive if and only if the group is virtually abelian.
We adapt the abstract concepts of abelianness and centrality of universal algebra to the context of inverse semigroups. We characterize abelian and central congruences in terms of the corresponding congruence pairs. We relate centrality to conjugation in inverse semigroups. Subsequently, we prove that solvable and nilpotent inverse semigroups are groups.
We strengthen the maximal ergodic theorem for actions of groups of polynomial growth to a form involving jump quantity, which is the sharpest result among the family of variational or maximal ergodic theorems. As two applications, we first obtain the upcrossing inequalities with exponential decay of ergodic averages and then provide an explicit bound on the convergence rate such that the ergodic averages with strongly continuous regular group actions are metastable (or locally stable) on a large interval. Before exploiting the transference techniques, we actually obtain a stronger result—the jump estimates on a metric space with a measure not necessarily doubling. The ideas or techniques involve martingale theory, non-doubling Calderón–Zygmund theory, almost orthogonality argument, and some delicate geometric argument involving the balls and the cubes on a group equipped with a not necessarily doubling measure.
We show how finiteness properties of a group and a subgroup transfer to finiteness properties of the Schlichting completion relative to this subgroup.n Further, we provide a criterion when the dense embedding of a discrete group into the Schlichting completion relative to one of its subgroups induces an isomorphism in (continuous) cohomology. As an application, we show that the continuous cohomology of the Neretin group vanishes in all positive degrees.
Let Fn be the free group on $n \geq 2$ generators. We show that for all $1 \leq m \leq 2n-3$ (respectively, for all $1 \leq m \leq 2n-4$), there exists a subgroup of ${\operatorname{Aut}(F_n)}$ (respectively, ${\operatorname{Out}(F_n)}$), which has finiteness of type Fm but not of type $FP_{m+1}(\mathbb{Q})$; hence, it is not m-coherent. In both cases, the new result is the upper bound $m= 2n-3$ (respectively, $m = 2n-4$), as it cannot be obtained by embedding direct products of free noncyclic groups, and certifies higher incoherence up to the virtual cohomological dimension and is therefore sharp. As a tool of the proof, we discuss the existence and nature of multiple inequivalent extensions of a suitable finite-index subgroup K4 of ${\operatorname{Aut}(F_2)}$ (isomorphic to the quotient of the pure braid group on four strands by its centre): the fibre of four of these extensions arise from the strand-forgetting maps on the braid groups, while a fifth is related with the Cardano–Ferrari epimorphism.
In 1954, B. H. Neumann discovered that if $G$ is a group in which all conjugacy classes have finite cardinality at most $m$, then the derived group $G'$ is finite of $m$-bounded order. In 2018, G. Dierings and P. Shumyatsky showed that if $|x^G| \le m$ for any commutator $x\in G$, then the second derived group $G''$ is finite and has $m$-bounded order. This paper deals with finite groups in which $|x^G|\le m$ whenever $x\in G$ is a commutator of prime power order. The main result is that $G''$ has $m$-bounded order.
Given a symmetric monoidal category ${\mathcal C}$ with product $\sqcup $, where the neutral element for the product is an initial object, we consider the poset of $\sqcup $-complemented subobjects of a given object X. When this poset has finite height, we define decompositions and partial decompositions of X which are coherent with $\sqcup $, and order them by refinement. From these posets, we define complexes of frames and partial bases, augmented Bergman complexes and related ordered versions. We propose a unified approach to the study of their combinatorics and homotopy type, establishing various properties and relations between them. Via explicit homotopy formulas, we will be able to transfer structural properties, such as Cohen-Macaulayness.
In well-studied scenarios, the poset of $\sqcup $-complemented subobjects specializes to the poset of free factors of a free group, the subspace poset of a vector space, the poset of nondegenerate subspaces of a vector space with a nondegenerate form, and the lattice of flats of a matroid. The decomposition and partial decomposition posets, the complex of frames and partial bases together with the ordered versions, either coincide with well-known structures, generalize them, or yield new interesting objects. In these particular cases, we provide new results along with open questions and conjectures.
In this article, we study the Johnson homomorphisms of basis-conjugating automorphism groups of free groups. We construct obstructions for the surjectivity of the Johnson homomorphisms. By using it, we determine their cokernels of degree up to four and give further observations for degree greater than four. As applications, we give the affirmative answer to the Andreadakis problem for the basis-conjugating automorphism groups of free groups at degree four. Moreover, we calculate twisted first cohomology groups of the braid-permutation automorphism groups of free groups.
Let W be a simply laced Weyl group of finite type and rank n. If W has type $E_7$, $E_8$ or $D_n$ for n even, then the root system of W has subsystems of type $nA_1$. This gives rise to an irreducible Macdonald representation of W spanned by n-roots, which are products of n orthogonal roots in the symmetric algebra of the reflection representation. We prove that in these cases, the set of all maximal sets of orthogonal positive roots has the structure of a quasiparabolic set in the sense of Rains–Vazirani. The quasiparabolic structure can be described in terms of certain quadruples of orthogonal positive roots which we call crossings, nestings and alignments. This leads to nonnesting and noncrossing bases for the Macdonald representation, as well as some highly structured partially ordered sets. We use the $8$-roots in type $E_8$ to give a concise description of a graph that is known to be non-isomorphic but quantum isomorphic to the orthogonality graph of the $E_8$ root system.
A subgroup X of a group G is said to be transitively normal if X is normal in any subgroup Y of G such that $X\leq Y$ and X is subnormal in Y. We investigate the structure of generalised soluble groups with dense transitively normal subgroups, that is, groups in which every nonempty open interval in their subgroup lattice contains a transitively normal subgroup. In particular, it will be proved that nonperiodic generalised soluble groups with dense transitively normal subgroups are abelian.
The Hanna Neumann conjecture (HNC) for a free group G predicts that $\overline{\chi}(U\cap V)\leqslant \overline{\chi} (U)\overline{\chi}(V)$ for all finitely generated subgroups U and V, where $\overline{\chi}(H) = \max\{-\chi(H),0\}$ denotes the reduced Euler characteristic of H. A strengthened version of the HNC was proved independently by Friedman and Mineyev in 2011. Recently, Antolín and Jaikin-Zapirain introduced the $L^2$-Hall property and showed that if G is a hyperbolic limit group that satisfies this property, then G satisfies the HNC. Antolín and Jaikin-Zapirain established the $L^2$-Hall property for free and surface groups, which Brown and Kharlampovich extended to all limit groups. In this paper, we prove the $L^2$-Hall property for graphs of free groups with cyclic edge groups that are hyperbolic relative to virtually abelian subgroups. We also give another proof of the $L^2$-Hall property for limit groups. As a corollary, we show that all these groups satisfy a strengthened version of the HNC.
We study random walks on metric spaces with contracting isometries. In this first article of the series, we establish sharp deviation inequalities by adapting Gouëzel’s pivotal time construction. As an application, we establish the exponential bounds for deviation from below, central limit theorem, law of the iterated logarithms, and the geodesic tracking of random walks on mapping class groups and CAT(0) spaces.
Let g be an element of a group G. For a positive integer n, let $R_n(g)$ be the subgroup generated by all commutators $[\ldots [[g,x],x],\ldots ,x]$ over $x\in G$, where x is repeated n times. Similarly, $L_n(g)$ is defined as the subgroup generated by all commutators $[\ldots [[x,g],g],\ldots ,g]$, where $x\in G$ and g is repeated n times. In the literature, there are several results showing that certain properties of groups with small subgroups $R_n(g)$ or $L_n(g)$ are close to those of Engel groups. The present article deals with orderable groups in which, for some $n\geq 1$, the subgroups $R_n(g)$ are polycyclic. Let $h\geq 0$, $n>0$ be integers and G be an orderable group in which $R_n(g)$ is polycyclic with Hirsch length at most h for every $g\in G$. It is proved that there are $(h,n)$-bounded numbers $h^*$ and $c^*$ such that G has a finitely generated normal nilpotent subgroup N with $h(N)\leq h^*$ and $G/N$ nilpotent of class at most $c^*$. The analogue of this theorem for $L_n(g)$ was established in 2018 by Shumyatsky [‘Orderable groups with Engel-like conditions’, J. Algebra499 (2018), 313–320].
It is a theorem due to F. Haglund and D. Wise that reflection groups (aka Coxeter groups) virtually embed into right-angled reflection groups (aka right-angled Coxeter groups). In this article, we generalize this observation to rotation groups, which can be thought of as a common generalization of Coxeter groups and graph products of groups. More precisely, we prove that rotation groups (aka periagroups) virtually embed into right-angled rotation groups (aka graph products of groups).
We study a family of Thompson-like groups built as rearrangement groups of fractals introduced by Belk and Forrest in 2019, each acting on a Ważewski dendrite. Each of these is a finitely generated group that is dense in the full group of homeomorphisms of the dendrite (studied by Monod and Duchesne in 2019) and has infinite-index finitely generated simple commutator subgroup, with a single possible exception. More properties are discussed, including finite subgroups, the conjugacy problem, invariable generation and existence of free subgroups. We discuss many possible generalisations, among which we find the Airplane rearrangement group $T_A$. Despite close connections with Thompson’s group F, dendrite rearrangement groups seem to share many features with Thompson’s group V.
In the present work, we investigate the Lie algebra of the Formanek-Procesi group $\textrm {FP}(A_{\Gamma })$ with base group $A_{\Gamma }$ a right-angled Artin group. We show that the Lie algebra $\textrm {gr}(\textrm {FP}(A_{\Gamma }))$ has a presentation that is dictated by the group presentation. Moreover, we show that if the base group $G$ is a finitely generated residually finite $p$-group, then $\textrm { FP}(G)$ is residually nilpotent. We also show that $\textrm {FP}(A_{\Gamma })$ is a residually torsion-free nilpotent group.
It is shown that if $\{H_n\}_{n \in \omega}$ is a sequence of groups without involutions, with $1 \lt |H_n| \leq 2^{\aleph_0}$, then the topologist’s product modulo the finite words is (up to isomorphism) independent of the choice of sequence. This contrasts with the abelian setting: if $\{A_n\}_{n \in \omega}$ is a sequence of countably infinite torsion-free abelian groups, then the isomorphism class of the product modulo sum $\prod_{n \in \omega} A_n/\bigoplus_{n \in \omega} A_n$ is dependent on the sequence.
Let (W, S) be a Coxeter system of rank n, and let $p_{(W, S)}(t)$ be its growth function. It is known that $p_{(W, S)}(q^{-1}) \lt \infty$ holds for all $n \leq q \in \mathbb{N}$. In this paper, we will show that this still holds for $q = n-1$, if (W, S) is 2-spherical. Moreover, we will prove that $p_{(W, S)}(q^{-1}) = \infty$ holds for $q = n-2$, if the Coxeter diagram of (W, S) is the complete graph. These two results provide a complete characterization of the finiteness of the growth function in the case of 2-spherical Coxeter systems with a complete Coxeter diagram.