To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We improve and expand in two directions the theory of norms on complex matrices induced by random vectors. We first provide a simple proof of the classification of weakly unitarily invariant norms on the Hermitian matrices. We use this to extend the main theorem in Chávez, Garcia, and Hurley (2023, Canadian Mathematical Bulletin 66, 808–826) from exponent $d\geq 2$ to $d \geq 1$. Our proofs are much simpler than the originals: they do not require Lewis’ framework for group invariance in convex matrix analysis. This clarification puts the entire theory on simpler foundations while extending its range of applicability.
We find closed formulas for arbitrarily high mixed moments of characteristic polynomials of the Alternative Circular Unitary Ensemble, as well as closed formulas for the averages of ratios of characteristic polynomials in this ensemble. A comparison is made to analogous results for the Circular Unitary Ensemble. Both moments and ratios are studied via symmetric function theory and a general formula of Borodin-Olshanski-Strahov.
For a principal ideal domain $A$, the Latimer–MacDuffee correspondence sets up a bijection between the similarity classes of matrices in $\textrm{M}_{n}(A)$ with irreducible characteristic polynomial $f(x)$ and the ideal classes of the order $A[x]/(f(x))$. We prove that when $A[x]/(f(x))$ is maximal (i.e. integrally closed, i.e. a Dedekind domain), then every similarity class contains a representative that is, in a sense, close to being a companion matrix. The first step in the proof is to show that any similarity class corresponding to an ideal (not necessarily prime) of degree one contains a representative of the desired form. The second step is a previously unpublished result due to Lenstra that implies that when $A[x]/(f(x))$ is maximal, every ideal class contains an ideal of degree one.
Given a set X of $n\times n$ matrices and a positive integer m, we consider the problem of estimating the cardinalities of the product sets $A_1 \cdots A_m$, where $A_i\in X$. When $X={\mathcal M}_n(\mathbb {Z};H)$, the set of $n\times n$ matrices with integer elements of size at most H, we give several bounds on the cardinalities of the product sets and solution sets of related equations such as $A_1 \cdots A_m=C$ and $A_1 \cdots A_m=B_1 \cdots B_m$. We also consider the case where X is the subset of matrices in ${\mathcal M}_n(\mathbb {F})$, where $\mathbb {F}$ is a field with bounded rank $k\leq n$. In this case, we completely classify the related product set.
In 1968, Steinberg [Endomorphisms of Linear Algebraic Groups, Memoirs of the American Mathematical Society, 80 (American Mathematical Society, Providence, RI, 1968)] proved a theorem stating that the exterior powers of an irreducible reflection representation of a Euclidean reflection group are again irreducible and pairwise nonisomorphic. We extend this result to a more general context where the inner product invariant under the group action may not necessarily exist.
Williamson’s theorem states that for any $2n \times 2n$ real positive definite matrix A, there exists a $2n \times 2n$ real symplectic matrix S such that $S^TAS=D \oplus D$, where D is an $n\times n$ diagonal matrix with positive diagonal entries known as the symplectic eigenvalues of A. Let H be any $2n \times 2n$ real symmetric matrix such that the perturbed matrix $A+H$ is also positive definite. In this paper, we show that any symplectic matrix $\tilde {S}$ diagonalizing $A+H$ in Williamson’s theorem is of the form $\tilde {S}=S Q+\mathcal {O}(\|H\|)$, where Q is a $2n \times 2n$ real symplectic as well as orthogonal matrix. Moreover, Q is in symplectic block diagonal form with the block sizes given by twice the multiplicities of the symplectic eigenvalues of A. Consequently, we show that $\tilde {S}$ and S can be chosen so that $\|\tilde {S}-S\|=\mathcal {O}(\|H\|)$. Our results hold even if A has repeated symplectic eigenvalues. This generalizes the stability result of symplectic matrices for non-repeated symplectic eigenvalues given by Idel, Gaona, and Wolf [Linear Algebra Appl., 525:45–58, 2017].
The celebrated Erdős–Ko–Rado (EKR) theorem for Paley graphs of square order states that all maximum cliques are canonical in the sense that each maximum clique arises from the subfield construction. Recently, Asgarli and Yip extended this result to Peisert graphs and other Cayley graphs which are Peisert-type graphs with nice algebraic properties on the connection set. On the other hand, there are Peisert-type graphs for which the EKR theorem fails to hold. In this article, we show that the EKR theorem of Paley graphs extends to almost all pseudo-Paley graphs of Peisert-type. Furthermore, we establish the stability results of the same flavor.
We study the problem of detecting the community structure from the generalized stochastic block model with two communities (G2-SBM). Based on analysis of the Stieljtes transform of the empirical spectral distribution, we prove a Baik–Ben Arous–Péché (BBP)-type transition for the largest eigenvalue of the G2-SBM. For specific models, such as a hidden community model and an unbalanced stochastic block model, we provide precise formulas for the two largest eigenvalues, establishing the gap in the BBP-type transition.
The existence of isometric embedding of $S_q^m$ into $S_p^n$, where $1\leq p\neq q\leq \infty$ and $m,n\geq 2$, has been recently studied in [6]. In this article, we extend the study of isometric embeddability beyond the above-mentioned range of $p$ and $q$. More precisely, we show that there is no isometric embedding of the commutative quasi-Banach space $\ell _q^m(\mathbb {R})$ into $\ell _p^n(\mathbb {R})$, where $(q,p)\in (0,\infty )\times (0,1)$ and $p\neq q$. As non-commutative quasi-Banach spaces, we show that there is no isometric embedding of $S_q^m$ into $S_p^n$, where $(q,p)\in (0,2)\setminus \{1\}\times (0,1)$$\cup \, \{1\}\times (0,1)\setminus \left \{\!\frac {1}{n}:n\in \mathbb {N}\right \}$$\cup \, \{\infty \}\times (0,1)\setminus \left \{\!\frac {1}{n}:n\in \mathbb {N}\right \}$ and $p\neq q$. Moreover, in some restrictive cases, we also show that there is no isometric embedding of $S_q^m$ into $S_p^n$, where $(q,p)\in [2, \infty )\times (0,1)$. A new tool in our paper is the non-commutative Clarkson's inequality for Schatten class operators. Other tools involved are the Kato–Rellich theorem and multiple operator integrals in perturbation theory, followed by intricate computations involving power-series analysis.
As an extension of Sylvester’s matrix, a tridiagonal matrix is investigated by determining both left and right eigenvectors. Orthogonality relations between left and right eigenvectors are derived. Two determinants of the matrices constructed by the left and right eigenvectors are evaluated in closed form.
In 2005, N. Nikolski proved among other things that for any $r\in (0,1)$ and any $K\geq 1$, the condition number $CN(T)=\Vert T\Vert \cdot \Vert T^{-1}\Vert $ of any invertible n-dimensional complex Banach space operators T satisfying the Kreiss condition, with spectrum contained in $\left \{ r\leq |z|<1\right \}$, satisfies the inequality $CN(T)\leq CK(T)\Vert T \Vert n/r^{n}$ where $K(T)$ denotes the Kreiss constant of T and $C>0$ is an absolute constant. He also proved that for $r\ll 1/n,$ the latter bound is asymptotically sharp as $n\rightarrow \infty $. In this note, we prove that this bound is actually achieved by a family of explicit $n\times n$ Toeplitz matrices with arbitrary singleton spectrum $\{\lambda \}\subset \mathbb {D}\setminus \{0\}$ and uniformly bounded Kreiss constant. Independently, we exhibit a sequence of Jordan blocks with Kreiss constants tending to $\infty $ showing that Nikolski’s inequality is still asymptotically sharp as K and n go to $\infty $.
Let $M_{\langle \mathbf {u},\mathbf {v},\mathbf {w}\rangle }\in \mathbb C^{\mathbf {u}\mathbf {v}}{\mathord { \otimes } } \mathbb C^{\mathbf {v}\mathbf {w}}{\mathord { \otimes } } \mathbb C^{\mathbf {w}\mathbf {u}}$ denote the matrix multiplication tensor (and write $M_{\langle \mathbf {n} \rangle }=M_{\langle \mathbf {n},\mathbf {n},\mathbf {n}\rangle }$), and let $\operatorname {det}_3\in (\mathbb C^9)^{{\mathord { \otimes } } 3}$ denote the determinant polynomial considered as a tensor. For a tensor T, let $\underline {\mathbf {R}}(T)$ denote its border rank. We (i) give the first hand-checkable algebraic proof that $\underline {\mathbf {R}}(M_{\langle 2\rangle })=7$, (ii) prove $\underline {\mathbf {R}}(M_{\langle 223\rangle })=10$ and $\underline {\mathbf {R}}(M_{\langle 233\rangle })=14$, where previously the only nontrivial matrix multiplication tensor whose border rank had been determined was $M_{\langle 2\rangle }$, (iii) prove $\underline {\mathbf {R}}( M_{\langle 3\rangle })\geq 17$, (iv) prove $\underline {\mathbf {R}}(\operatorname {det}_3)=17$, improving the previous lower bound of $12$, (v) prove $\underline {\mathbf {R}}(M_{\langle 2\mathbf {n}\mathbf {n}\rangle })\geq \mathbf {n}^2+1.32\mathbf {n}$ for all $\mathbf {n}\geq 25$, where previously only $\underline {\mathbf {R}}(M_{\langle 2\mathbf {n}\mathbf {n}\rangle })\geq \mathbf {n}^2+1$ was known, as well as lower bounds for $4\leq \mathbf {n}\leq 25$, and (vi) prove $\underline {\mathbf {R}}(M_{\langle 3\mathbf {n}\mathbf {n}\rangle })\geq \mathbf {n}^2+1.6\mathbf {n}$ for all $\mathbf {n} \ge 18$, where previously only $\underline {\mathbf {R}}(M_{\langle 3\mathbf {n}\mathbf {n}\rangle })\geq \mathbf {n}^2+2$ was known. The last two results are significant for two reasons: (i) they are essentially the first nontrivial lower bounds for tensors in an “unbalanced” ambient space and (ii) they demonstrate that the methods we use (border apolarity) may be applied to sequences of tensors.
The methods used to obtain the results are new and “nonnatural” in the sense of Razborov and Rudich, in that the results are obtained via an algorithm that cannot be effectively applied to generic tensors. We utilize a new technique, called border apolarity developed by Buczyńska and Buczyński in the general context of toric varieties. We apply this technique to develop an algorithm that, given a tensor T and an integer r, in a finite number of steps, either outputs that there is no border rank r decomposition for T or produces a list of all normalized ideals which could potentially result from a border rank decomposition. The algorithm is effectively implementable when T has a large symmetry group, in which case it outputs potential decompositions in a natural normal form. The algorithm is based on algebraic geometry and representation theory.
Given $A\subseteq GL_2(\mathbb {F}_q)$, we prove that there exist disjoint subsets $B, C\subseteq A$ such that $A = B \sqcup C$ and their additive and multiplicative energies satisfying
A convex cone is homogeneous if its automorphism group acts transitively on the interior of the cone. Cones that are homogeneous and self-dual are called symmetric. Conic optimization problems over symmetric cones have been extensively studied, particularly in the literature on interior-point algorithms, and as the foundation of modelling tools for convex optimization. In this paper we consider the less well-studied conic optimization problems over cones that are homogeneous but not necessarily self-dual.
We start with cones of positive semidefinite symmetric matrices with a given sparsity pattern. Homogeneous cones in this class are characterized by nested block-arrow sparsity patterns, a subset of the chordal sparsity patterns. Chordal sparsity guarantees that positive define matrices in the cone have zero-fill Cholesky factorizations. The stronger properties that make the cone homogeneous guarantee that the inverse Cholesky factors have the same zero-fill pattern. We describe transitive subsets of the cone automorphism groups, and important properties of the composition of log-det barriers with the automorphisms.
Next, we consider extensions to linear slices of the positive semidefinite cone, and review conditions that make such cones homogeneous. An important example is the matrix norm cone, the epigraph of a quadratic-over-linear matrix function. The properties of homogeneous sparse matrix cones are shown to extend to this more general class of homogeneous matrix cones.
We then give an overview of the algebraic theory of homogeneous cones due to Vinberg and Rothaus. A fundamental consequence of this theory is that every homogeneous cone admits a spectrahedral (linear matrix inequality) representation.
We conclude by discussing the role of homogeneous structure in primal–dual symmetric interior-point methods, contrasting this with the well-developed algorithms for symmetric cones that exploit the strong properties of self-scaled barriers, and with symmetric primal–dual methods for general convex cones.
Large deviations of the largest and smallest eigenvalues of $\mathbf{X}\mathbf{X}^\top/n$ are studied in this note, where $\mathbf{X}_{p\times n}$ is a $p\times n$ random matrix with independent and identically distributed (i.i.d.) sub-Gaussian entries. The assumption imposed on the dimension size p and the sample size n is $p=p(n)\rightarrow\infty$ with $p(n)={\mathrm{o}}(n)$. This study generalizes one result obtained in [3].
For a $k$-uniform hypergraph $\mathcal{H}$ on vertex set $\{1, \ldots, n\}$ we associate a particular signed incidence matrix $M(\mathcal{H})$ over the integers. For $\mathcal{H} \sim \mathcal{H}_k(n, p)$ an Erdős–Rényi random $k$-uniform hypergraph, ${\mathrm{coker}}(M(\mathcal{H}))$ is then a model for random abelian groups. Motivated by conjectures from the study of random simplicial complexes we show that for $p = \omega (1/n^{k - 1})$, ${\mathrm{coker}}(M(\mathcal{H}))$ is torsion-free.
Kruskal’s theorem states that a sum of product tensors constitutes a unique tensor rank decomposition if the so-called k-ranks of the product tensors are large. We prove a ‘splitting theorem’ for sets of product tensors, in which the k-rank condition of Kruskal’s theorem is weakened to the standard notion of rank, and the conclusion of uniqueness is relaxed to the statement that the set of product tensors splits (i.e., is disconnected as a matroid). Our splitting theorem implies a generalization of Kruskal’s theorem. While several extensions of Kruskal’s theorem are already present in the literature, all of these use Kruskal’s original permutation lemma and hence still cannot certify uniqueness when the k-ranks are below a certain threshold. Our generalization uses a completely new proof technique, contains many of these extensions and can certify uniqueness below this threshold. We obtain several other useful results on tensor decompositions as consequences of our splitting theorem. We prove sharp lower bounds on tensor rank and Waring rank, which extend Sylvester’s matrix rank inequality to tensors. We also prove novel uniqueness results for nonrank tensor decompositions.
We develop a method based on the Burau matrix to detect conditions on the linking numbers of braid strands. Our main application is to iterated exchanged braids. Unless the braid permutation fixes both braid edge strands, we establish under some fairly generic conditions on the linking numbers a ‘subsymmetry’ property; in particular at most two such braids can be mutually conjugate. As an addition, we prove that the Burau kernel is contained in the commutator subgroup of the pure braid group. We discuss also some properties of the Burau image.
We first establish a lower bound on the size and spectral radius of a graph G to guarantee that G contains a fractional perfect matching. Then, we determine an upper bound on the distance spectral radius of a graph G to ensure that G has a fractional perfect matching. Furthermore, we construct some extremal graphs to show all the bounds are best possible.