We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A diagonal version of the strong reflection principle is introduced, along with fragments of this principle associated with arbitrary forcing classes. The relationships between the resulting principles and related principles, such as the corresponding forcing axioms and the corresponding fragments of the strong reflection principle, are analyzed, and consequences are presented. Some of these consequences are “exact” versions of diagonal stationary reflection principles of sets of ordinals. We also separate some of these diagonal strong reflection principles from related axioms.
Lindström’s theorem obviously fails as a characterization of first-order logic without identity ($\mathcal {L}_{\omega \omega }^{-} $). In this note, we provide a fix: we show that $\mathcal {L}_{\omega \omega }^{-} $ is a maximal abstract logic satisfying a weak form of the isomorphism property (suitable for identity-free languages and studied in [11]), the Löwenheim–Skolem property, and compactness. Furthermore, we show that compactness can be replaced by being recursively enumerable for validity under certain conditions. In the proofs, we use a form of strong upwards Löwenheim–Skolem theorem not available in the framework with identity.
We investigate iterating the construction of $C^{*}$, the L-like inner model constructed using first order logic augmented with the “cofinality $\omega $” quantifier. We first show that $\left (C^{*}\right )^{C^{*}}=C^{*}\ne L$ is equiconsistent with $\mathrm {ZFC}$, as well as having finite strictly decreasing sequences of iterated $C^{*}$s. We then show that in models of the form $L[U]$ we get infinite decreasing sequences of length $\omega $, and that an inner model with a measurable cardinal is required for that.
We analyze the axiomatic strength of the following theorem due to Rival and Sands [28] in the style of reverse mathematics. Every infinite partial order P of finite width contains an infinite chain C such that every element of P is either comparable with no element of C or with infinitely many elements of C. Our main results are the following. The Rival–Sands theorem for infinite partial orders of arbitrary finite width is equivalent to $\mathsf {I}\Sigma ^0_{2} + \mathsf {ADS}$ over $\mathsf {RCA}_0$. For each fixed $k \geq 3$, the Rival–Sands theorem for infinite partial orders of width $\leq \!k$ is equivalent to $\mathsf {ADS}$ over $\mathsf {RCA}_0$. The Rival–Sands theorem for infinite partial orders that are decomposable into the union of two chains is equivalent to $\mathsf {SADS}$ over $\mathsf {RCA}_0$. Here $\mathsf {RCA}_0$ denotes the recursive comprehension axiomatic system, $\mathsf {I}\Sigma ^0_{2}$ denotes the $\Sigma ^0_2$ induction scheme, $\mathsf {ADS}$ denotes the ascending/descending sequence principle, and $\mathsf {SADS}$ denotes the stable ascending/descending sequence principle. To the best of our knowledge, these versions of the Rival–Sands theorem for partial orders are the first examples of theorems from the general mathematics literature whose strength is exactly characterized by $\mathsf {I}\Sigma ^0_{2} + \mathsf {ADS}$, by $\mathsf {ADS}$, and by $\mathsf {SADS}$. Furthermore, we give a new purely combinatorial result by extending the Rival–Sands theorem to infinite partial orders that do not have infinite antichains, and we show that this extension is equivalent to arithmetical comprehension over $\mathsf {RCA}_0$.
In the Zermelo–Fraenkel set theory with the Axiom of Choice, a forcing notion is “$\kappa $-distributive” if and only if it is “$\kappa $-sequential.” We show that without the Axiom of Choice, this equivalence fails, even if we include a weak form of the Axiom of Choice, the Principle of Dependent Choice for $\kappa $. Still, the equivalence may still hold along with very strong failures of the Axiom of Choice, assuming the consistency of large cardinal axioms. We also prove that although a $\kappa $-distributive forcing notion may violate Dependent Choice, it must preserve the Axiom of Choice for families of size $\kappa $. On the other hand, a $\kappa $-sequential can violate the Axiom of Choice for countable families. We also provide a condition of “quasiproperness” which is sufficient for the preservation of Dependent Choice, and is also necessary if the forcing notion is sequential.
We construct a nonseparable Banach space $\mathcal {X}$ (actually, of density continuum) such that any uncountable subset $\mathcal {Y}$ of the unit sphere of $\mathcal {X}$ contains uncountably many points distant by less than $1$ (in fact, by less then $1-\varepsilon $ for some $\varepsilon>0$). This solves in the negative the central problem of the search for a nonseparable version of Kottman’s theorem which so far has produced many deep positive results for special classes of Banach spaces and has related the global properties of the spaces to the distances between points of uncountable subsets of the unit sphere. The property of our space is strong enough to imply that it contains neither an uncountable Auerbach system nor an uncountable equilateral set. The space is a strictly convex renorming of the Johnson–Lindenstrauss space induced by an $\mathbb {R}$-embeddable almost disjoint family of subsets of $\mathbb {N}$. We also show that this special feature of the almost disjoint family is essential to obtain the above properties.
After reviewing various natural bi-interpretations in urelement set theory, including second-order set theories with urelements, we explore the strength of second-order reflection in these contexts. Ultimately, we prove that second-order reflection with the abundant atom axiom is bi-interpretable and hence also equiconsistent with the existence of a supercompact cardinal. The proof relies on a reflection characterization of supercompactness, namely, a cardinal $\kappa $ is supercompact if and only if every $\Pi ^1_1$ sentence true in a structure M (of any size) containing $\kappa $ in a language of size less than $\kappa $ is also true in a substructure $m\prec M$ of size less than $\kappa $ with $m\cap \kappa \in \kappa $.
We systematically study several versions of the disjunction and the existence properties in modal arithmetic. First, we newly introduce three classes $\mathrm {B}$, $\Delta (\mathrm {B})$, and $\Sigma (\mathrm {B})$ of formulas of modal arithmetic and study basic properties of them. Then, we prove several implications between the properties. In particular, among other things, we prove that for any consistent recursively enumerable extension T of $\mathbf {PA}(\mathbf {K})$ with $T \nvdash \Box \bot $, the $\Sigma (\mathrm {B})$-disjunction property, the $\Sigma (\mathrm {B})$-existence property, and the $\mathrm {B}$-existence property are pairwise equivalent. Moreover, we introduce the notion of the $\Sigma (\mathrm {B})$-soundness of theories and prove that for any consistent recursively enumerable extension of $\mathbf {PA}(\mathbf {K4})$, the modal disjunction property is equivalent to the $\Sigma (\mathrm {B})$-soundness.
In this paper we will show that for every cut I of any countable nonstandard model $\mathcal {M}$ of $\mathrm {I}\Sigma _{1}$, each I-small $\Sigma _{1}$-elementary submodel of $\mathcal {M}$ is of the form of the set of fixed points of some proper initial self-embedding of $\mathcal {M}$ iff I is a strong cut of $\mathcal {M}$. Especially, this feature will provide us with some equivalent conditions with the strongness of the standard cut in a given countable model $\mathcal {M}$ of $ \mathrm {I}\Sigma _{1} $. In addition, we will find some criteria for extendability of initial self-embeddings of countable nonstandard models of $ \mathrm {I}\Sigma _{1} $ to larger models.
We construct a model of set theory in which there exists a Suslin tree and satisfies that any two normal Aronszajn trees, neither of which contains a Suslin subtree, are club isomorphic. We also show that if S is a free normal Suslin tree, then for any positive integer n there is a c.c.c. forcing extension in which S is n-free but all of its derived trees of dimension greater than n are special.
We study the isomorphism relation on Borel classes of locally compact Polish metric structures. We prove that isomorphism on such classes is always classifiable by countable structures (equivalently: Borel reducible to graph isomorphism), which implies, in particular, that isometry of locally compact Polish metric spaces is Borel reducible to graph isomorphism. We show that potentially $\boldsymbol {\Pi }^{0}_{\alpha + 1}$ isomorphism relations are Borel reducible to equality on hereditarily countable sets of rank $\alpha $, $\alpha \geq 2$. We also study approximations of the Hjorth-isomorphism game, and formulate a condition ruling out classifiability by countable structures.
We prove that the category $\mathsf {SBor}$ of standard Borel spaces is the (bi-)initial object in the 2-category of countably complete Boolean (countably) extensive categories. This means that $\mathsf {SBor}$ is the universal category admitting some familiar algebraic operations of countable arity (e.g., countable products and unions) obeying some simple compatibility conditions (e.g., products distribute over disjoint unions). More generally, for any infinite regular cardinal $\kappa $, the dual of the category $\kappa \mathsf {Bool}_{\kappa }$ of $\kappa $-presented $\kappa $-complete Boolean algebras is (bi-)initial in the 2-category of $\kappa $-complete Boolean ($\kappa $-)extensive categories.
The classes stable, simple, and NSOP$_1$ in the stability hierarchy for first-order theories can be characterised by the existence of a certain independence relation. For each of them there is a canonicity theorem: there can be at most one nice independence relation. Independence in stable and simple first-order theories must come from forking and dividing (which then coincide), and for NSOP$_1$ theories it must come from Kim-dividing. We generalise this work to the framework of Abstract Elementary Categories (AECats) with the amalgamation property. These are a certain kind of accessible category generalising the category of (subsets of) models of some theory. We prove canonicity theorems for stable, simple, and NSOP$_1$-like independence relations. The stable and simple cases have been done before in slightly different setups, but we provide them here as well so that we can recover part of the original stability hierarchy. We also provide abstract definitions for each of these independence relations as what we call isi-dividing, isi-forking, and long Kim-dividing.
We employ the lens provided by formal truth theory to study axiomatizations of Peano Arithmetic ${\textsf {(PA)}}$. More specifically, let Elementary Arithmetic ${\textsf {(EA)}}$ be the fragment $\mathsf {I}\Delta _0 + \mathsf {Exp}$ of ${\textsf {PA}}$, and let ${\textsf {CT}}^-[{\textsf {EA}}]$ be the extension of ${\textsf {EA}}$ by the commonly studied axioms of compositional truth ${\textsf {CT}}^-$. We investigate both local and global properties of the family of first order theories of the form ${\textsf {CT}}^-[{\textsf {EA}}] +\alpha $, where $\alpha $ is a particular way of expressing “${\textsf {PA}}$ is true” (using the truth predicate). Our focus is dominantly on two types of axiomatizations, namely: (1) schematic axiomatizations that are deductively equivalent to ${\textsf {PA}}$ and (2) axiomatizations that are proof-theoretically equivalent to the canonical axiomatization of ${\textsf {PA}}$.
We give a new characterization of the cardinal invariant $\mathfrak {d}$ as the minimal cardinality of a family $\mathcal {D}$ of tall summable ideals such that an ultrafilter is rapid if and only if it has non-empty intersection with all the ideals in the family $\mathcal {D}$. On the other hand, we prove that in the Miller model, given any family $\mathcal {D}$ of analytic tall p-ideals such that $\vert \mathcal {D}\vert <\mathfrak {d}$, there is an ultrafilter $\mathcal {U}$ which is an $\mathscr {I}$-ultrafilter for all ideals $\mathscr {I}\in \mathcal {D}$ at the same time, yet $\mathcal {U}$ is not a rapid ultrafilter. As a corollary, we obtain that in the Miller model, given any analytic tall p-ideal $\mathscr {I}$, $\mathscr {I}$-ultrafilters are dense in the Rudin–Blass ordering, generalizing a theorem of Bartoszyński and S. Shelah, who proved that in such model, Hausdorff ultrafilters are dense in the Rudin–Blass ordering. This theorem also shows some limitations about possible generalizations of a theorem of C. Laflamme and J. Zhu.
Working toward showing the decidability of the $\forall \exists $-theory of the ${\Sigma ^0_2}$-enumeration degrees, we prove that no so-called Ahmad pair of ${\Sigma ^0_2}$-enumeration degrees can join to ${\mathbf 0}_e'$.
The aim of this paper is to provide a complete Natural Kind Semantics for an Essentialist Theory of Kinds. The theory is formulated in two-sorted first order monadic modal logic with identity. The natural kind semantics is based on Rudolf Willes Theory of Concept Lattices. The semantics is then used to explain several consequences of the theory, including results about the specificity (species–genus) relations between kinds, the definitions of kinds in terms of genera and specific differences and the existence of negative kinds. First, I show under which conditions the Hierarchy principle, which has been subjected to counterexamples in the literature, holds. I also show that a different principle about the species–genus relations between kinds, namely Kant’s Law, follows from the essentialist theory. Second, I introduce two new operations for kinds and show that they can be used to provide traditional definitions of kinds in terms of genera and specific differences. Finally, I show that these operations of specific difference induce, for each kind, a uniquely specified contrary kind and a uniquely specified subcontrary kind, which can be used as semantic values for non-classical predicate negations of kind terms.
In this paper, we introduce a logic based on team semantics, called $\mathbf {FOT} $, whose expressive power is elementary, i.e., coincides with first-order logic both on the level of sentences and (possibly open) formulas, and we also show that a sublogic of $\mathbf {FOT} $, called $\mathbf {FOT}^{\downarrow } $, captures exactly downward closed elementary (or first-order) team properties. We axiomatize completely the logic $\mathbf {FOT} $, and also extend the known partial axiomatization of dependence logic to dependence logic enriched with the logical constants in $\mathbf {FOT}^{\downarrow } $.
Locality is a property of logics, whose origins lie in the works of Hanf and Gaifman, having their utility in the context of finite model theory. Such a property is quite useful in proofs of inexpressibility, but it is also useful in establishing normal forms for logical formulas. There are generally two forms of locality: (i’) if two structures $\mathfrak {A}$ and $\mathfrak {B}$ realize the same multiset of types of neighborhoods of radius d, then they agree on a given sentence $\Phi $. Here d depends only on $\Phi $; (ii’) if the d-neighborhoods of two tuples $\vec {a}_1$ and $\vec {a}_2$ in a structure $\mathfrak {A}$ are isomorphic, then $\mathfrak {A} \models \Phi (\vec {a}_1) \Leftrightarrow \Phi (\vec {a}_2)$. Again, d depends on $\Phi $, and not on $\mathfrak {A}$. Form (i’) originated from Hanf’s works. Form (ii’) came from Gaifman’s theorem. There is no doubt about the usefulness of the notion of locality, which as seen applies to a huge number of situations. However, there is a deficiency in such a notion: all versions of the notion of locality refer to isomorphism of neighborhoods, which is a fairly strong property. For example, where structures simply do not have sufficient isomorphic neighborhoods, versions of the notion of locality obviously cannot be applied. So the question that immediately arises is: would it be possible to weaken such a condition and maintain Hanf/Gaifman-localities? Arenas, Barceló, and Libkin establish a new condition for the notions of locality, weakening the requirement that neighborhoods should be isomorphic, establishing only the condition that they must be indistinguishable in a given logic. That is, instead of requiring $N_d(\vec {a}) \cong N_d(\vec {b})$, you should only require $N_d(\vec {a}) \equiv _k N_d(\vec {b})$, for some $k \geq 0$. Using the fact that logical equivalence is often captured by Ehrenfeucht–Fraïssé games, the authors formulate a game-based framework in which logical equivalence-based locality can be defined. Thus, the notion defined by the authors is that of game-based locality. Although quite promising as well as easy to apply, the game-based framework (used to define locality under logical equivalence) has the following problem: if a logic $\mathcal {L}$ is local (Hanf-, or Gaifman-, or weakly) under isomorphisms, and $\mathcal {L}'$ is a sub-logic of $\mathcal {L}$, then $\mathcal {L}'$ is local as well. The same, however, is not true for game-based locality: properties of games guaranteeing locality need not be preserved if one passes to weaker games. The question that immediately arises is: is it possible to define the notion of locality under logical equivalence without resorting to game-based frameworks? In this thesis, I present a homotopic variation for locality under logical equivalence, namely a Quillen model category-based framework for locality under k-logical equivalence, for every primitive-positive sentence of quantifier-rank k.
Boolean-valued models generalize classical two-valued models by allowing arbitrary complete Boolean algebras as value ranges. The goal of my dissertation is to study Boolean-valued models and explore their philosophical and mathematical applications.
In Chapter 1, I build a robust theory of first-order Boolean-valued models that parallels the existing theory of two-valued models. I develop essential model-theoretic notions like “Boolean-valuation,” “diagram,” and “elementary diagram,” and prove a series of theorems on Boolean-valued models, including the (strengthened) Soundness and Completeness Theorem, the Löwenheim–Skolem Theorems, the Elementary Chain Theorem, and many more.
Chapter 2 gives an example of a philosophical application of Boolean-valued models. I apply Boolean-valued models to the language of mereology to model indeterminacy in the parthood relation. I argue that Boolean-valued semantics is the best degree-theoretic semantics for the language of mereology. In particular, it trumps the well-known alternative—fuzzy-valued semantics. I also show that, contrary to what many have argued, indeterminacy in parthood entails neither indeterminacy in existence nor indeterminacy in identity, though being compatible with both.
Chapter 3 (joint work with Bokai Yao) gives an example of a mathematical application of Boolean-valued models. Scott and Solovay famously used Boolean-valued models on set theory to obtain relative consistency results. In Chapter 3, I investigate two ways of extending the Scott–Solovay construction to set theory with urelements. I argue that the standard way of extending the construction faces a serious problem, and offer a new way that is free from the problem.