To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Reverse Mathematics (RM hereafter) is a program in the foundations of mathematics where the aim is to identify the minimal axioms needed to prove a given theorem from ordinary, i.e., non-set theoretic, mathematics. This program has unveiled surprising regularities: the minimal axioms are very often equivalent to the theorem over the base theory, a weak system of ‘computable mathematics’, while most theorems are either provable in this base theory, or equivalent to one of only four logical systems. The latter plus the base theory are called the ‘Big Five’ and the associated equivalences are robust following Montalbán, i.e., stable under small variations of the theorems at hand. Working in Kohlenbach’s higher-order RM, we obtain two new and long series of equivalences based on theorems due to Bolzano, Weierstrass, Jordan, and Cantor; these equivalences are extremely robust and have no counterpart among the Big Five systems. Thus, higher-order RM is much richer than its second-order cousin, boasting at least two extra ‘Big’ systems.
There exist two main notions of typicality in computability theory, namely, Cohen genericity and randomness. In this article, we introduce a new notion of genericity, called partition genericity, which is at the intersection of these two notions of typicality, and show that many basis theorems apply to partition genericity. More precisely, we prove that every co-hyperimmune set and every Kurtz random is partition generic, and that every partition generic set admits weak infinite subsets, for various notions of weakness. In particular, we answer a question of Kjos-Hanssen and Liu by showing that every Kurtz random admits an infinite subset which does not compute any set of positive effective Hausdorff dimension. Partition genericity is a partition regular notion, so these results imply many existing pigeonhole basis theorems.
Following the finitist’s rejection of the complete totality of the natural numbers, a finitist language allows only propositional connectives and bounded quantifiers in the formula-construction but not unbounded quantifiers. This is opposed to the currently standard framework, a first-order language. We conduct axiomatic studies on the notion of truth in the framework of finitist arithmetic in which at least smash function $\#$ is available. We propose finitist variants of Tarski ramified truth theories up to rank $\omega $, of Kripke–Feferman truth theory and of Friedman–Sheard truth theory, and show that all of these have the same strength as the finitist arithmetic of one higher level along Grzegorczyk hierarchy. On the other hand, we also show that adding Burgess-style groundedness schema, adjusted to the finitist setting, makes Kripke–Feferman truth theory as strong as primitive recursive arithmetic. Meanwhile, we obtain some basic results on finitist theories of (full and hat) inductive definitions and on the second order axiom of hat inductive definitions for positive operators.
We study the relative computational power of structures related to the ordered field of reals, specifically using the notion of generic Muchnik reducibility. We show that any expansion of the reals by a continuous function has no more computing power than the reals, answering a question of Igusa, Knight, and Schweber [7]. On the other hand, we show that there is a certain Borel expansion of the reals that is strictly more powerful than the reals and such that any Borel quotient of the reals reduces to it.
We present an analogue of Gödel’s second incompleteness theorem for systems of second-order arithmetic. Whereas Gödel showed that sufficiently strong theories that are $\Pi ^0_1$-sound and $\Sigma ^0_1$-definable do not prove their own $\Pi ^0_1$-soundness, we prove that sufficiently strong theories that are $\Pi ^1_1$-sound and $\Sigma ^1_1$-definable do not prove their own $\Pi ^1_1$-soundness. Our proof does not involve the construction of a self-referential sentence but rather relies on ordinal analysis.
We prove a strengthened version of Shavrukov’s result on the non-isomorphism of diagonalizable algebras of two $\Sigma _1$-sound theories, based on the improvements previously found by Adamsson. We then obtain several corollaries to the strengthened result by applying it to various pairs of theories and obtain new non-isomorphism examples. In particular, we show that there are no surjective homomorphisms from the algebra $(\mathfrak {L}_T, \Box _T\Box _T)$ onto the algebra $(\mathfrak {L}_T, \Box _T)$. The case of bimodal diagonalizable algebras is also considered. We give several examples of pairs of theories with isomorphic diagonalizable algebras but non-isomorphic bimodal diagonalizable algebras.
Hardin and Taylor proved that any function on the reals—even a nowhere continuous one—can be correctly predicted, based solely on its past behavior, at almost every point in time. They showed that one could even arrange for the predictors to be robust with respect to simple time shifts, and asked whether they could be robust with respect to other, more complicated time distortions. This question was partially answered by Bajpai and Velleman, who provided upper and lower frontiers (in the subgroup lattice of $\mathrm{Homeo}^+(\mathbb {R})$) on how robust a predictor can possibly be. We improve both frontiers, some of which reduce ultimately to consequences of Hölder’s Theorem (that every Archimedean group is abelian).
There is a Turing functional $\Phi $ taking $A^\prime $ to a theory $T_A$ whose complexity is exactly that of the jump of A, and which has the property that $A \leq _T B$ if and only if $T_A \trianglelefteq T_B$ in Keisler’s order. In fact, by more elaborate means and related theories, we may keep the complexity at the level of A without using the jump.
We show the consistency, relative to the appropriate supercompactness or strong compactness assumptions, of the existence of a non-supercompact strongly compact cardinal $\kappa _0$ (the least measurable cardinal) exhibiting properties which are impossible when $\kappa _0$ is supercompact. In particular, we construct models in which $\square _{\kappa ^+}$ holds for every inaccessible cardinal $\kappa $ except $\kappa _0$, GCH fails at every inaccessible cardinal except $\kappa _0$, and $\kappa _0$ is less than the least Woodin cardinal.
The tower number ${\mathfrak t}$ and the ultrafilter number $\mathfrak {u}$ are cardinal characteristics from set theory. They are based on combinatorial properties of classes of subsets of $\omega $ and the almost inclusion relation $\subseteq ^*$ between such subsets. We consider analogs of these cardinal characteristics in computability theory.
We say that a sequence $(G_n)_{n \in {\mathbb N}}$ of computable sets is a tower if $G_0 = {\mathbb N}$, $G_{n+1} \subseteq ^* G_n$, and $G_n\smallsetminus G_{n+1}$ is infinite for each n. A tower is maximal if there is no infinite computable set contained in all $G_n$. A tower ${\left \langle {G_n}\right \rangle }_{n\in \omega }$ is an ultrafilter base if for each computable R, there is n such that $G_n \subseteq ^* R$ or $G_n \subseteq ^* \overline R$; this property implies maximality of the tower. A sequence $(G_n)_{n \in {\mathbb N}}$ of sets can be encoded as the “columns” of a set $G\subseteq \mathbb N$. Our analogs of ${\mathfrak t}$ and ${\mathfrak u}$ are the mass problems of sets encoding maximal towers, and of sets encoding towers that are ultrafilter bases, respectively. The relative position of a cardinal characteristic broadly corresponds to the relative computational complexity of the mass problem. We use Medvedev reducibility to formalize relative computational complexity, and thus to compare such mass problems to known ones.
We show that the mass problem of ultrafilter bases is equivalent to the mass problem of computing a function that dominates all computable functions, and hence, by Martin’s characterization, it captures highness. On the other hand, the mass problem for maximal towers is below the mass problem of computing a non-low set. We also show that some, but not all, noncomputable low sets compute maximal towers: Every noncomputable (low) c.e. set computes a maximal tower but no 1-generic $\Delta ^0_2$-set does so.
We finally consider the mass problems of maximal almost disjoint, and of maximal independent families. We show that they are Medvedev equivalent to maximal towers, and to ultrafilter bases, respectively.
Building on Pierre Simon’s notion of distality, we introduce distality rank as a property of first-order theories and give examples for each rank m such that $1\leq m \leq \omega $. For NIP theories, we show that distality rank is invariant under base change. We also define a generalization of type orthogonality called m-determinacy and show that theories of distality rank m require certain products to be m-determined. Furthermore, for NIP theories, this behavior characterizes m-distality. If we narrow the scope to stable theories, we observe that m-distality can be characterized by the maximum cycle size found in the forking “geometry,” so it coincides with $(m-1)$-triviality. On a broader scale, we see that m-distality is a strengthening of Saharon Shelah’s notion of m-dependence.
In this article we show that bi-intuitionistic predicate logic lacks the Craig Interpolation Property. We proceed by adapting the counterexample given by Mints, Olkhovikov and Urquhart for intuitionistic predicate logic with constant domains [13]. More precisely, we show that there is a valid implication $\phi \rightarrow \psi $ with no interpolant. Importantly, this result does not contradict the unfortunately named ‘Craig interpolation’ theorem established by Rauszer in [24] since that article is about the property more correctly named ‘deductive interpolation’ (see Galatos, Jipsen, Kowalski and Ono’s use of this term in [5]) for global consequence. Given that the deduction theorem fails for bi-intuitionistic logic with global consequence, the two formulations of the property are not equivalent.
We investigate properties of the ineffability and the Ramsey operator, and a common generalization of those that was introduced by the second author, with respect to higher indescribability, as introduced by the first author. This extends earlier investigations on the ineffability operator by James Baumgartner, and on the Ramsey operator by Qi Feng, by Philip Welch et al., and by the first author.
Every topological group G has, up to isomorphism, a unique minimal G-flow that maps onto every minimal G-flow, the universal minimal flow $M(G).$ We show that if G has a compact normal subgroup K that acts freely on $M(G)$ and there exists a uniformly continuous cross-section from $G/K$ to $G,$ then the phase space of $M(G)$ is homeomorphic to the product of the phase space of $M(G/K)$ with K. Moreover, if either the left and right uniformities on G coincide or G is isomorphic to a semidirect product $G/K\ltimes K$, we also recover the action, in the latter case extending a result of Kechris and Sokić. As an application, we show that the phase space of $M(G)$ for any totally disconnected locally compact Polish group G with a normal open compact subgroup is homeomorphic to a finite set, the Cantor set $2^{\mathbb {N}}$, $M(\mathbb {Z})$, or $M(\mathbb {Z})\times 2^{\mathbb {N}}.$
Theorems of hyperarithmetic analysis (THAs) occupy an unusual neighborhood in the realms of reverse mathematics and recursion theoretic complexity. They lie above all the fixed (recursive) iterations of the Turing Jump but below ATR$_{0}$ (and so $\Pi _{1}^{1}$-CA$_{0}$ or the hyperjump). There is a long history of proof theoretic principles which are THAs. Until Barnes, Goh, and Shore [ta] revealed an array of theorems in graph theory living in this neighborhood, there was only one mathematical denizen. In this paper we introduce a new neighborhood of theorems which are almost theorems of hyperarithmetic analysis (ATHAs). When combined with ACA$_{0}$ they are THAs but on their own they are very weak. We generalize several conservativity classes ($\Pi _{1}^{1}$, r-$\Pi _{2}^{1}$, and Tanaka) and show that all our examples (and many others) are conservative over RCA$_{0}$ in all these senses and weak in other recursion theoretic ways as well. We provide denizens, both mathematical and logical. These results answer a question raised by Hirschfeldt and reported in Montalbán [2011] by providing a long list of pairs of principles one of which is very weak over RCA$_{0}$ but over ACA$_{0}$ is equivalent to the other which may be strong (THA) or very strong going up a standard hierarchy and at the end being stronger than full second order arithmetic.
We write $\mathcal {S}_n(A)$ for the set of permutations of a set A with n non-fixed points and $\mathrm {{seq}}^{1-1}_n(A)$ for the set of one-to-one sequences of elements of A with length n where n is a natural number greater than $1$. With the Axiom of Choice, $|\mathcal {S}_n(A)|$ and $|\mathrm {{seq}}^{1-1}_n(A)|$ are equal for all infinite sets A. Among our results, we show, in ZF, that $|\mathcal {S}_n(A)|\leq |\mathrm {{seq}}^{1-1}_n(A)|$ for any infinite set A if ${\mathrm {AC}}_{\leq n}$ is assumed and this assumption cannot be removed. In the other direction, we show that $|\mathrm {{seq}}^{1-1}_n(A)|\leq |\mathcal {S}_{n+1}(A)|$ for any infinite set A and the subscript $n+1$ cannot be reduced to n. Moreover, we also show that “$|\mathcal {S}_n(A)|\leq |\mathcal {S}_{n+1}(A)|$ for any infinite set A” is not provable in ZF.
We show that numerous distinctive concepts of constructive mathematics arise automatically from an “antithesis” translation of affine logic into intuitionistic logic via a Chu/Dialectica construction. This includes apartness relations, complemented subsets, anti-subgroups and anti-ideals, strict and non-strict order pairs, cut-valued metrics, and apartness spaces. We also explain the constructive bifurcation of some classical concepts using the choice between multiplicative and additive affine connectives. Affine logic and the antithesis construction thus systematically “constructivize” classical definitions, handling the resulting bookkeeping automatically.
In [17], we introduced an extensional variant of generic realizability [22], where realizers act extensionally on realizers, and showed that this form of realizability provides inner models of $\mathsf {CZF}$ (constructive Zermelo–Fraenkel set theory) and $\mathsf {IZF}$ (intuitionistic Zermelo–Fraenkel set theory), that further validate $\mathsf {AC}_{\mathsf {FT}}$ (the axiom of choice in all finite types). In this paper, we show that extensional generic realizability validates several choice principles for dependent types, all exceeding $\mathsf {AC}_{\mathsf {FT}}$. We then show that adding such choice principles does not change the arithmetic part of either $\mathsf {CZF}$ or $\mathsf {IZF}$.
Certain instances of contraction are provable in Zardini’s system $\mathbf {IK}^\omega $ which causes triviality once a truth predicate and suitable fixed points are available.
Recall that B is PA relative to A if B computes a member of every nonempty $\Pi ^0_1(A)$ class. This two-place relation is invariant under Turing equivalence and so can be thought of as a binary relation on Turing degrees. Miller and Soskova [23] introduced the notion of a $\Pi ^0_1$ class relative to an enumeration oracle A, which they called a $\Pi ^0_1{\left \langle {A}\right \rangle }$ class. We study the induced extension of the relation B is PA relative to A to enumeration oracles and hence enumeration degrees. We isolate several classes of enumeration degrees based on their behavior with respect to this relation: the PA bounded degrees, the degrees that have a universal class, the low for PA degrees, and the ${\left \langle {\text {self}\kern1pt}\right \rangle }$-PA degrees. We study the relationship between these classes and other known classes of enumeration degrees. We also investigate a group of classes of enumeration degrees that were introduced by Kalimullin and Puzarenko [14] based on properties that are commonly studied in descriptive set theory. As part of this investigation, we give characterizations of three of their classes in terms of a special sub-collection of relativized $\Pi ^0_1$ classes—the separating classes. These three can then be seen to be direct analogues of three of our classes. We completely determine the relative position of all classes in question.