We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove several consistency results concerning the notion of $\omega $-strongly measurable cardinal in $\operatorname {\mathrm {HOD}}$. In particular, we show that is it consistent, relative to a large cardinal hypothesis weaker than $o(\kappa ) = \kappa $, that every successor of a regular cardinal is $\omega $-strongly measurable in $\operatorname {\mathrm {HOD}}$.
In this paper, I develop an algorithmic impossible-worlds model of belief and knowledge that provides a middle ground between models that entail that everyone is logically omniscient and those that are compatible with even the most egregious kinds of logical incompetence. In outline, the model entails that an agent believes (knows) $\phi $ just in case she can easily (and correctly) compute that $\phi $ is true and thus has the capacity to make her actions depend on whether $\phi $. The model thereby captures the standard view that belief and knowledge ground are constitutively connected to dispositions to act. As I explain, the model improves upon standard algorithmic models developed by Parikh, Halpern, Moses, Vardi, and Duc, among other ways, by integrating them into an impossible-worlds framework. The model also avoids some important disadvantages of recent candidate middle-ground models based on dynamic epistemic logic or step logic, and it can subsume their most important advantages.
Cohesive powers of computable structures are effective analogs of ultrapowers, where cohesive sets play the role of ultrafilters. Let $\omega $, $\zeta $, and $\eta $ denote the respective order-types of the natural numbers, the integers, and the rationals when thought of as linear orders. We investigate the cohesive powers of computable linear orders, with special emphasis on computable copies of $\omega $. If $\mathcal {L}$ is a computable copy of $\omega $ that is computably isomorphic to the usual presentation of $\omega $, then every cohesive power of $\mathcal {L}$ has order-type $\omega + \zeta \eta $. However, there are computable copies of $\omega $, necessarily not computably isomorphic to the usual presentation, having cohesive powers not elementarily equivalent to $\omega + \zeta \eta $. For example, we show that there is a computable copy of $\omega $ with a cohesive power of order-type $\omega + \eta $. Our most general result is that if $X \subseteq \mathbb {N} \setminus \{0\}$ is a Boolean combination of $\Sigma _2$ sets, thought of as a set of finite order-types, then there is a computable copy of $\omega $ with a cohesive power of order-type $\omega + \boldsymbol {\sigma }(X \cup \{\omega + \zeta \eta + \omega ^*\})$, where $\boldsymbol {\sigma }(X \cup \{\omega + \zeta \eta + \omega ^*\})$ denotes the shuffle of the order-types in X and the order-type $\omega + \zeta \eta + \omega ^*$. Furthermore, if X is finite and non-empty, then there is a computable copy of $\omega $ with a cohesive power of order-type $\omega + \boldsymbol {\sigma }(X)$.
Free choice sequences play a key role in the intuitionistic theory of the continuum and especially in the theorems of intuitionistic analysis that conflict with classical analysis, leading many classical mathematicians to reject the concept of a free choice sequence. By treating free choice sequences as potentially infinite objects, however, they can be comfortably situated alongside classical analysis, allowing a rapprochement of these two mathematical traditions. Building on recent work on the modal analysis of potential infinity, I formulate a modal theory of the free choice sequences known as lawless sequences. Intrinsically well-motivated axioms for lawless sequences are added to a background theory of classical second-order arithmetic, leading to a theory I call $MC_{LS}$. This theory interprets the standard intuitionistic theory of lawless sequences and is conservative over the classical background theory.
Generalizing the notion of a tight almost disjoint family, we introduce the notions of a tight eventually different family of functions in Baire space and a tight eventually different set of permutations of $\omega $. Such sets strengthen maximality, exist under $\mathsf {MA} (\sigma \mathrm {-centered})$ and come with a properness preservation theorem. The notion of tightness also generalizes earlier work on the forcing indestructibility of maximality of families of functions. As a result we compute the cardinals $\mathfrak {a}_e$ and $\mathfrak {a}_p$ in many known models by giving explicit witnesses and therefore obtain the consistency of several constellations of cardinal characteristics of the continuum including $\mathfrak {a}_e = \mathfrak {a}_p = \mathfrak {d} < \mathfrak {a}_T$, $\mathfrak {a}_e = \mathfrak {a}_p < \mathfrak {d} = \mathfrak {a}_T$, $\mathfrak {a}_e = \mathfrak {a}_p =\mathfrak {i} < \mathfrak {u}$, and $\mathfrak {a}_e=\mathfrak {a}_p = \mathfrak {a} < non(\mathcal N) = cof(\mathcal N)$. We also show that there are $\Pi ^1_1$ tight eventually different families and tight eventually different sets of permutations in L thus obtaining the above inequalities alongside $\Pi ^1_1$ witnesses for $\mathfrak {a}_e = \mathfrak {a}_p = \aleph _1$.
Moreover, we prove that tight eventually different families are Cohen indestructible and are never analytic.
When classes of structures are not first-order definable, we might still try to find a nice description. There are two common ways for doing this. One is to expand the language, leading to notions of pseudo-elementary classes, and the other is to allow infinite conjuncts and disjuncts. In this paper we examine the intersection. Namely, we address the question: Which classes of structures are both pseudo-elementary and ${\mathcal {L}}_{\omega _1, \omega }$-elementary? We find that these are exactly the classes that can be defined by an infinitary formula that has no infinitary disjunctions.
There exist two notions of equivalence of behavior between states of a Labelled Markov Process (LMP): state bisimilarity and event bisimilarity. The first one can be considered as an appropriate generalization to continuous spaces of Larsen and Skou’s probabilistic bisimilarity, whereas the second one is characterized by a natural logic. C. Zhou expressed state bisimilarity as the greatest fixed point of an operator $\mathcal {O}$, and thus introduced an ordinal measure of the discrepancy between it and event bisimilarity. We call this ordinal the Zhou ordinal of $\mathbb {S}$, $\mathfrak {Z}(\mathbb {S})$. When $\mathfrak {Z}(\mathbb {S})=0$, $\mathbb {S}$ satisfies the Hennessy–Milner property. The second author proved the existence of an LMP $\mathbb {S}$ with $\mathfrak {Z}(\mathbb {S}) \geq 1$ and Zhou showed that there are LMPs having an infinite Zhou ordinal. In this paper we show that there are LMPs $\mathbb {S}$ over separable metrizable spaces having arbitrary large countable $\mathfrak {Z}(\mathbb {S})$ and that it is consistent with the axioms of $\mathit {ZFC}$ that there is such a process with an uncountable Zhou ordinal.
We formulate and explore two basic axiomatic systems of type-free subjective probability. One of them explicates a notion of finitely additive probability. The other explicates a concept of infinitely additive probability. It is argued that the first of these systems is a suitable background theory for formally investigating controversial principles about type-free subjective probability.
We develop multisummability, in the positive real direction, for generalized power series with natural support, and we prove o-minimality of the expansion of the real field by all multisums of these series. This resulting structure expands both $\mathbb {R}_{\mathcal {G}}$ and the reduct of $\mathbb {R}_{\text {an}^*}$ generated by all convergent generalized power series with natural support; in particular, its expansion by the exponential function defines both the gamma function on $(0,\infty )$ and the zeta function on $(1,\infty )$.
Assuming the existence of suitable large cardinals, we show it is consistent that the Provability logic $\mathbf {GL}$ is complete with respect to the filter sequence of normal measures. This result answers a question of Andreas Blass from 1990 and a related question of Beklemishev and Joosten.
Sahlqvist theory is extended to the fragments of the intuitionistic propositional calculus that include the conjunction connective. This allows us to introduce a Sahlqvist theory of intuitionistic character amenable to arbitrary protoalgebraic deductive systems. As an application, we obtain a Sahlqvist theorem for the fragments of the intuitionistic propositional calculus that include the implication connective and for the extensions of the intuitionistic linear logic.
We put in print a classical result that states that for most purposes, there is no harm in assuming the existence of saturated models in model theory. The presentation is aimed for model theorists with only basic knowledge of axiomatic set theory.
Elementary first-order theories of trees allowing at most, exactly $\mathrm{m}$, and any finite number of immediate descendants are introduced and proved mutually interpretable among themselves and with Robinson arithmetic, Adjunctive Set Theory with Extensionality and other well-known weak theories of numbers, sets, and strings.
In this paper we study elimination of imaginaries in some classes of pure ordered abelian groups. For the class of ordered abelian groups with bounded regular rank (equivalently with finite spines) we obtain weak elimination of imaginaries once we add sorts for the quotient groups $\Gamma /\Delta $ for each definable convex subgroup $\Delta $, and sorts for the quotient groups $\Gamma /(\Delta + \ell \Gamma )$ where $\Delta $ is a definable convex subgroup and $\ell \in \mathbb {N}_{\geq 2}$. We refer to these sorts as the quotient sorts. For the dp-minimal case we obtain a complete elimination of imaginaries if we also add constants to distinguish the cosets of $\ell \Gamma $ in $\Gamma $, where $\ell \in \mathbb {N}_{\geq 2}$.
We show that the weakest versions of Foreman’s minimal generic hugeness axioms cannot hold simultaneously on adjacent cardinals. Moreover, conventional forcing techniques cannot produce a model of one of these axioms.
Improving and clarifying a construction of Horowitz and Shelah, we show how to construct (in $\mathsf {ZF}$, i.e., without using the Axiom of Choice) maximal cofinitary groups. Among the groups we construct, one is definable by a formula in second-order arithmetic with only a few natural number quantifiers.
After discussing the limitations inherent to all set-theoretic reflection principles akin to those studied by A. Lévy et. al. in the 1960s, we introduce new principles of reflection based on the general notion of Structural Reflection and argue that they are in strong agreement with the conception of reflection implicit in Cantor’s original idea of the unknowability of the Absolute, which was subsequently developed in the works of Ackermann, Lévy, Gödel, Reinhardt, and others. We then present a comprehensive survey of results showing that different forms of the new principle of Structural Reflection are equivalent to well-known large cardinal axioms covering all regions of the large-cardinal hierarchy, thereby justifying the naturalness of the latter.
In this paper, we characterize the possible cofinalities of the least $\lambda $-strongly compact cardinal. We show that, on the one hand, for any regular cardinal, $\delta $, that carries a $\lambda $-complete uniform ultrafilter, it is consistent, relative to the existence of a supercompact cardinal above $\delta $, that the least $\lambda $-strongly compact cardinal has cofinality $\delta $. On the other hand, provably the cofinality of the least $\lambda $-strongly compact cardinal always carries a $\lambda $-complete uniform ultrafilter.