To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We investigate large set axioms defined in terms of elementary embeddings over constructive set theories, focusing on $\mathsf {IKP}$ and $\mathsf {CZF}$. Most previously studied large set axioms, notably, the constructive analogues of large cardinals below $0^\sharp $, have proof-theoretic strength weaker than full Second-Order Arithmetic. On the other hand, the situation is dramatically different for those defined via elementary embeddings. We show that by adding to $\mathsf {IKP}$ the basic properties of an elementary embedding $j\colon V\to M$ for $\Delta _0$-formulas, which we will denote by $\Delta _0\text {-}\mathsf {BTEE}_M$, we obtain the consistency of $\mathsf {ZFC}$ and more. We will also see that the consistency strength of a Reinhardt set exceeds that of $\mathsf {ZF+WA}$. Furthermore, we will define super Reinhardt sets and $\mathsf {TR}$, which is a constructive analogue of V being totally Reinhardt, and prove that their proof-theoretic strength exceeds that of $\mathsf {ZF}$ with choiceless large cardinals.
We show that the conceptual distance between any two theories of first-order logic is the same as the generator distance between their Lindenbaum–Tarski algebras of concepts. As a consequence of this, we show that, for any two arbitrary mathematical structures, the generator distance between their meaning algebras (also known as cylindric set algebras) is the same as the conceptual distance between their first-order logic theories. As applications, we give a complete description for the distances between meaning algebras corresponding to structures having at most three elements and show that this small network represents all the possible conceptual distances between complete theories. As a corollary of this, we will see that there are only two non-trivial structures definable on three-element sets up to conceptual equivalence (i.e., up to elementary plus definitional equivalence).
For many years, there have been conducting research (e.g., by Bergelson, Furstenberg, Kojman, Kubiś, Shelah, Szeptycki, Weiss) into sequentially compact spaces that are, in a sense, topological counterparts of some combinatorial theorems, for instance, Ramsey’s theorem for coloring graphs, Hindman’s finite sums theorem, and van der Waerden’s arithmetical progressions theorem. These spaces are defined with the aid of different kinds of convergences: IP-convergence, R-convergence, and ordinary convergence.
The first aim of this paper is to present a unified approach to these various types of convergences and spaces. Then, using this unified approach, we prove some general theorems about existence of the considered spaces and show that all results obtained so far in this subject can be derived from our theorems.
The second aim of this paper is to obtain new results about the specific types of these spaces. For instance, we construct a Hausdorff Hindman space that is not an $\mathcal {I}_{1/n}$-space and a Hausdorff differentially compact space that is not Hindman. Moreover, we compare Ramsey spaces with other types of spaces. For instance, we construct a Ramsey space that is not Hindman and a Hindman space that is not Ramsey.
The last aim of this paper is to provide a characterization that shows when there exists a space of one considered type that is not of the other kind. This characterization is expressed in purely combinatorial manner with the aid of the so-called Katětov order that has been extensively examined for many years so far.
This paper may interest the general audience of mathematicians as the results we obtain are on the intersection of topology, combinatorics, set theory, and number theory.
We introduce a family of local ranks $D_Q$ depending on a finite set Q of pairs of the form $(\varphi (x,y),q(y)),$ where $\varphi (x,y)$ is a formula and $q(y)$ is a global type. We prove that in any NSOP$_1$ theory these ranks satisfy some desirable properties; in particular, $D_Q(x=x)<\omega $ for any finite tuple of variables x and any Q, if $q\supseteq p$ is a Kim-forking extension of types, then $D_Q(q)<D_Q(p)$ for some Q, and if $q\supseteq p$ is a Kim-non-forking extension, then $D_Q(q)=D_Q(p)$ for every Q that involves only invariant types whose Morley powers are -stationary. We give natural examples of families of invariant types satisfying this property in some NSOP$_1$ theories.
We also answer a question of Granger about equivalence of dividing and dividing finitely in the theory $T_\infty $ of vector spaces with a generic bilinear form. We conclude that forking equals dividing in $T_\infty $, strengthening an earlier observation that $T_\infty $ satisfies the existence axiom for forking independence.
Finally, we slightly modify our definitions and go beyond NSOP$_1$ to find out that our local ranks are bounded by the well-known ranks: the inp-rank (burden), and hence, in particular, by the dp-rank. Therefore, our local ranks are finite provided that the dp-rank is finite, for example, if T is dp-minimal. Hence, our notion of rank identifies a non-trivial class of theories containing all NSOP$_1$ and NTP$_2$ theories.
In this article, we introduce a hierarchy on the class of non-archimedean Polish groups that admit a compatible complete left-invariant metric. We denote this hierarchy by $\alpha $-CLI and L-$\alpha $-CLI where $\alpha $ is a countable ordinal. We establish three results:
(1)G is $0$-CLI iff $G=\{1_G\}$;
(2)G is $1$-CLI iff G admits a compatible complete two-sided invariant metric; and
(3)G is L-$\alpha $-CLI iff G is locally $\alpha $-CLI, i.e., G contains an open subgroup that is $\alpha $-CLI.
Subsequently, we show this hierarchy is proper by constructing non-archimedean CLI Polish groups $G_\alpha $ and $H_\alpha $ for $\alpha <\omega _1$, such that:
(1)$H_\alpha $ is $\alpha $-CLI but not L-$\beta $-CLI for $\beta <\alpha $; and
(2)$G_\alpha $ is $(\alpha +1)$-CLI but not L-$\alpha $-CLI.
Wilkie proved in 1977 that every countable model ${\mathcal M}$ of Peano Arithmetic has an elementary end extension ${\mathcal N}$ such that the interstructure lattice $\operatorname {\mathrm {Lt}}({\mathcal N} / {\mathcal M})$ is the pentagon lattice ${\mathbf N}_5$. This theorem implies that every countable nonstandard ${\mathcal M}$ has an elementary cofinal extension ${\mathcal N}$ such that $\operatorname {\mathrm {Lt}}({\mathcal N} / {\mathcal M}) \cong {\mathbf N}_5$. It is proved here that whenever ${\mathcal M} \prec {\mathcal N} \models \mathsf {PA}$ and $\operatorname {\mathrm {Lt}}({\mathcal N} / {\mathcal M}) \cong {\mathbf N}_5$, then ${\mathcal N}$ must be either an end or a cofinal extension of ${\mathcal M}$. In contrast, there are ${\mathcal M}^* \prec {\mathcal N}^* \models \mathsf {PA}^*$ such that $\operatorname {\mathrm {Lt}}({\mathcal N}^* / {\mathcal M}^*) \cong {\mathbf N}_5$ and ${\mathcal N}^*$ is neither an end nor a cofinal extension of ${\mathcal M}^*$.
This paper will study almost everywhere behaviors of functions on partition spaces of cardinals possessing suitable partition properties. Almost everywhere continuity and monotonicity properties for functions on partition spaces will be established. These results will be applied to distinguish the cardinality of certain subsets of the power set of partition cardinals.
The following summarizes the main results proved under suitable partition hypotheses.
• If $\kappa $ is a cardinal, $\epsilon < \kappa $, ${\mathrm {cof}}(\epsilon ) = \omega $, $\kappa \rightarrow _* (\kappa )^{\epsilon \cdot \epsilon }_2$ and $\Phi : [\kappa ]^\epsilon _* \rightarrow \mathrm {ON}$, then $\Phi $ satisfies the almost everywhere short length continuity property: There is a club $C \subseteq \kappa $ and a $\delta < \epsilon $ so that for all $f,g \in [C]^\epsilon _*$, if $f \upharpoonright \delta = g \upharpoonright \delta $ and $\sup (f) = \sup (g)$, then $\Phi (f) = \Phi (g)$.
• If $\kappa $ is a cardinal, $\epsilon $ is countable, $\kappa \rightarrow _* (\kappa )^{\epsilon \cdot \epsilon }_2$ holds and $\Phi : [\kappa ]^\epsilon _* \rightarrow \mathrm {ON}$, then $\Phi $ satisfies the strong almost everywhere short length continuity property: There is a club $C \subseteq \kappa $ and finitely many ordinals $\delta _0, ..., \delta _k \leq \epsilon $ so that for all $f,g \in [C]^\epsilon _*$, if for all $0 \leq i \leq k$, $\sup (f \upharpoonright \delta _i) = \sup (g \upharpoonright \delta _i)$, then $\Phi (f) = \Phi (g)$.
• If $\kappa $ satisfies $\kappa \rightarrow _* (\kappa )^\kappa _2$, $\epsilon \leq \kappa $ and $\Phi : [\kappa ]^\epsilon _* \rightarrow \mathrm {ON}$, then $\Phi $ satisfies the almost everywhere monotonicity property: There is a club $C \subseteq \kappa $ so that for all $f,g \in [C]^\epsilon _*$, if for all $\alpha < \epsilon $, $f(\alpha ) \leq g(\alpha )$, then $\Phi (f) \leq \Phi (g)$.
• Suppose dependent choice ($\mathsf {DC}$), ${\omega _1} \rightarrow _* ({\omega _1})^{\omega _1}_2$ and the almost everywhere short length club uniformization principle for ${\omega _1}$ hold. Then every function $\Phi : [{\omega _1}]^{\omega _1}_* \rightarrow {\omega _1}$ satisfies a finite continuity property with respect to closure points: Let $\mathfrak {C}_f$ be the club of $\alpha < {\omega _1}$ so that $\sup (f \upharpoonright \alpha ) = \alpha $. There is a club $C \subseteq {\omega _1}$ and finitely many functions $\Upsilon _0, ..., \Upsilon _{n - 1} : [C]^{\omega _1}_* \rightarrow {\omega _1}$ so that for all $f \in [C]^{\omega _1}_*$, for all $g \in [C]^{\omega _1}_*$, if $\mathfrak {C}_g = \mathfrak {C}_f$ and for all $i < n$, $\sup (g \upharpoonright \Upsilon _i(f)) = \sup (f \upharpoonright \Upsilon _i(f))$, then $\Phi (g) = \Phi (f)$.
• Suppose $\kappa $ satisfies $\kappa \rightarrow _* (\kappa )^\epsilon _2$ for all $\epsilon < \kappa $. For all $\chi < \kappa $, $[\kappa ]^{<\kappa }$ does not inject into ${}^\chi \mathrm {ON}$, the class of $\chi $-length sequences of ordinals, and therefore, $|[\kappa ]^\chi | < |[\kappa ]^{<\kappa }|$. As a consequence, under the axiom of determinacy $(\mathsf {AD})$, these two cardinality results hold when $\kappa $ is one of the following weak or strong partition cardinals of determinacy: ${\omega _1}$, $\omega _2$, $\boldsymbol {\delta }_n^1$ (for all $1 \leq n < \omega $) and $\boldsymbol {\delta }^2_1$ (assuming in addition $\mathsf {DC}_{\mathbb {R}}$).
We prove an isomorphism theorem between the canonical denotation systems for large natural numbers and large countable ordinal numbers, linking two fundamental concepts in Proof Theory. The first one is fast-growing hierarchies. These are sequences of functions on $\mathbb {N}$ obtained through processes such as the ones that yield multiplication from addition, exponentiation from multiplication, etc. and represent the canonical way of speaking about large finite numbers. The second one is ordinal collapsing functions, which represent the best-known method of describing large computable ordinals.
We observe that fast-growing hierarchies can be naturally extended to functors on the categories of natural numbers and of linear orders. The isomorphism theorem asserts that the categorical extensions of binary fast-growing hierarchies to ordinals are isomorphic to denotation systems given by cardinal collapsing functions. As an application of this fact, we obtain a restatement of the subsystem $\Pi ^1_1$-${\mathsf {CA_0}}$ of analysis as a higher-type well-ordering principle asserting that binary fast-growing hierarchies preserve well-foundedness.
Due to Gödel’s incompleteness results, the categoricity of a sufficiently rich mathematical theory and the semantic completeness of its underlying logic are two mutually exclusive ideals. For first- and second-order logics we obtain one of them with the cost of losing the other. In addition, in both these logics the rules of deduction for their quantifiers are non-categorical. In this paper I examine two recent arguments—Warren [43] and Murzi and Topey [30]—for the idea that the natural deduction rules for the first-order universal quantifier are categorical, i.e., they uniquely determine its semantic intended meaning. Both of them make use of McGee’s open-endedness requirement and the second one uses in addition Garson’s [19] local models for defining the validity of these rules. I argue that the success of both these arguments is relative to their semantic or infinitary assumptions, which could be easily discharged if the introduction rule for the universal quantifier is taken to be an infinitary rule, i.e., non-compact. Consequently, I reconsider the use of the $\omega $-rule and I show that the addition of the $\omega $-rule to the standard formalizations of first-order logic is categorical. In addition, I argue that the open-endedness requirement does not make the first-order Peano Arithmetic categorical and I advance an argument for its categoricity based on the inferential conservativity requirement.
We call an $\alpha \in \mathbb {R}$regainingly approximable if there exists a computable nondecreasing sequence $(a_n)_n$ of rational numbers converging to $\alpha $ with $\alpha - a_n < 2^{-n}$ for infinitely many ${n \in \mathbb {N}}$. We also call a set $A\subseteq \mathbb {N}$regainingly approximable if it is c.e. and the strongly left-computable number $2^{-A}$ is regainingly approximable. We show that the set of regainingly approximable sets is neither closed under union nor intersection and that every c.e. Turing degree contains such a set. Furthermore, the regainingly approximable numbers lie properly between the computable and the left-computable numbers and are not closed under addition. While regainingly approximable numbers are easily seen to be i.o. K-trivial, we construct such an $\alpha $ such that ${K(\alpha \restriction n)>n}$ for infinitely many n. Similarly, there exist regainingly approximable sets whose initial segment complexity infinitely often reaches the maximum possible for c.e. sets. Finally, there is a uniform algorithm splitting regular real numbers into two regainingly approximable numbers that are still regular.
On the basis of Poincaré and Weyl’s view of predicativity as invariance, we develop an extensive framework for predicative, type-free first-order set theory in which $\Gamma _0$ and much bigger ordinals can be defined as von Neumann ordinals. This refutes the accepted view of $\Gamma _0$ as the “limit of predicativity”.
The Halpern–Läuchli theorem, a combinatorial result about trees, admits an elegant proof due to Harrington using ideas from forcing. In an attempt to distill the combinatorial essence of this proof, we isolate various partition principles about products of perfect Polish spaces. These principles yield straightforward proofs of the Halpern–Läuchli theorem, and the same forcing from Harrington’s proof can force their consistency. We also show that these principles are not ZFC theorems by showing that they put lower bounds on the size of the continuum.
Goodstein’s principle is arguably the first purely number-theoretic statement known to be independent of Peano arithmetic. It involves sequences of natural numbers which at first appear to diverge, but eventually decrease to zero. These sequences are defined relative to a notation system based on exponentiation for the natural numbers. In this article, we provide a self-contained and modern analysis of Goodstein’s principle, obtaining some variations and improvements. We explore notions of optimality for notation systems and apply them to the classical Goodstein process and to a weaker variant based on multiplication rather than exponentiation. In particular, we introduce the notion of base-change maximality, and show how it leads to far-reaching extensions of Goodstein’s result. We moreover show that by varying the initial base of the Goodstein process, one readily obtains independence results for each of the fragments $\mathsf {I}\Sigma _n$ of Peano arithmetic.
We continue our study from Peterzil et al. (2022, Preprint, arXiv:2208.08293) of finite-dimensional definable groups in models of the theory $T_{\partial }$, the model companion of an o-minimal ${\mathcal {L}}$-theory T expanded by a generic derivation $\partial $ as in Fornasiero and Kaplan (2021, Journal of Mathematical Logic 21, 2150007).
We generalize Buium’s notion of an algebraic D-group to ${\mathcal {L}}$-definable D-groups, namely $(G,s)$, where G is an ${\mathcal {L}}$-definable group in a model of T, and $s:G\to \tau (G)$ is an ${\mathcal {L}}$-definable group section. Our main theorem says that every definable group of finite dimension in a model of $T_\partial $ is definably isomorphic to a group of the form
Let T be the theory of dense cyclically ordered sets with at least two elements. We determine the classifying space of $\mathsf {Mod}(T)$ to be homotopically equivalent to $\mathbb {CP}^\infty $. In particular, $\pi _2(\lvert \mathsf {Mod}(T)\rvert )=\mathbb {Z}$, which answers a question in our previous work. The computation is based on Connes’ cycle category $\Lambda $.
We investigate degree of satisfiability questions in the context of Heyting algebras and intuitionistic logic. We classify all equations in one free variable with respect to finite satisfiability gap, and determine which common principles of classical logic in multiple free variables have finite satisfiability gap. In particular we prove that, in a finite non-Boolean Heyting algebra, the probability that a randomly chosen element satisfies $x \vee \neg x = \top $ is no larger than $\frac {2}{3}$. Finally, we generalize our results to infinite Heyting algebras, and present their applications to point-set topology, black-box algebras, and the philosophy of logic.
The Baire algebra of a topological space X is the quotient of the algebra of all subsets of X modulo the meager sets. We show that this Boolean algebra can be endowed with a natural closure operator, resulting in a closure algebra which we denote $\mathbf {Baire}(X)$. We identify the modal logic of such algebras to be the well-known system $\mathsf {S5}$, and prove soundness and strong completeness for the cases where X is crowded and either completely metrizable and continuum-sized or locally compact Hausdorff. We also show that every extension of $\mathsf {S5}$ is the modal logic of a subalgebra of $\mathbf {Baire}(X)$, and that soundness and strong completeness also holds in the language with the universal modality.
Let $\mathscr {C}$ be a class of finite and infinite graphs that is closed under induced subgraphs. The well-known Łoś–Tarski Theorem from classical model theory implies that $\mathscr {C}$ is definable in first-order logic by a sentence $\varphi $ if and only if $\mathscr {C}$ has a finite set of forbidden induced finite subgraphs. This result provides a powerful tool to show nontrivial characterizations of graphs of small vertex cover, of bounded tree-depth, of bounded shrub-depth, etc. in terms of forbidden induced finite subgraphs. Furthermore, by the Completeness Theorem, we can compute from $\varphi $ the corresponding forbidden induced subgraphs. This machinery fails on finite graphs as shown by our results:
– There is a class $\mathscr {C}$ of finite graphs that is definable in first-order logic and closed under induced subgraphs but has no finite set of forbidden induced subgraphs.
– Even if we only consider classes $\mathscr {C}$ of finite graphs that can be characterized by a finite set of forbidden induced subgraphs, such a characterization cannot be computed from a first-order sentence $\varphi $ that defines $\mathscr {C}$ and the size of the characterization cannot be bounded by $f(|\varphi |)$ for any computable function f.
Besides their importance in graph theory, the above results also significantly strengthen similar known theorems for arbitrary structures.
Cummings, Foreman, and Magidor proved that Jensen’s square principle is non-compact at $\aleph _\omega $, meaning that it is consistent that $\square _{\aleph _n}$ holds for all $n<\omega $ while $\square _{\aleph _\omega }$ fails. We investigate the natural question of whether this phenomenon generalizes to singulars of uncountable cofinality. Surprisingly, we show that under some mild ${{\mathsf {PCF}}}$-theoretic hypotheses, the weak square principle $\square _\kappa ^*$ is in fact compact at singulars of uncountable cofinality.