To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
It is known that in an infinite very weakly cancellative semigroup with size $\kappa $, any central set can be partitioned into $\kappa $ central sets. Furthermore, if $\kappa $ contains $\lambda $ almost disjoint sets, then any central set contains $\lambda $ almost disjoint central sets. Similar results hold for thick sets, very thick sets and piecewise syndetic sets. In this article, we investigate three other notions of largeness: quasi-central sets, C-sets, and J-sets. We obtain that the statement applies for quasi-central sets. If the semigroup is commutative, then the statement holds for C-sets. Moreover, if $\kappa ^\omega = \kappa $, then the statement holds for J-sets.
We investigate the notion of strong measure zero sets in the context of the higher Cantor space $2^\kappa $ for $\kappa $ at least inaccessible. Using an iteration of perfect tree forcings, we give two proofs of the relative consistency of
$$\begin{align*}|2^\kappa| = \kappa^{++} + \forall X \subseteq 2^\kappa:\ X \textrm{ is strong measure zero if and only if } |X| \leq \kappa^+. \end{align*}$$
Furthermore, we also investigate the stronger notion of stationary strong measure zero and show that the equivalence of the two notions is undecidable in ZFC.
We propose a reformulation of the ideal $\mathcal {N}$ of Lebesgue measure zero sets of reals modulo an ideal J on $\omega $, which we denote by $\mathcal {N}_J$. In the same way, we reformulate the ideal $\mathcal {E}$ generated by $F_\sigma $ measure zero sets of reals modulo J, which we denote by $\mathcal {N}^*_J$. We show that these are $\sigma $-ideals and that $\mathcal {N}_J=\mathcal {N}$ iff J has the Baire property, which in turn is equivalent to $\mathcal {N}^*_J=\mathcal {E}$. Moreover, we prove that $\mathcal {N}_J$ does not contain co-meager sets and $\mathcal {N}^*_J$ contains non-meager sets when J does not have the Baire property. We also prove a deep connection between these ideals modulo J and the notion of nearly coherence of filters (or ideals).
We also study the cardinal characteristics associated with $\mathcal {N}_J$ and $\mathcal {N}^*_J$. We show their position with respect to Cichoń’s diagram and prove consistency results in connection with other very classical cardinal characteristics of the continuum, leaving just very few open questions. To achieve this, we discovered a new characterization of $\mathrm {add}(\mathcal {N})$ and $\mathrm {cof}(\mathcal {N})$. We also show that, in Cohen model, we can obtain many different values to the cardinal characteristics associated with our new ideals.
The strong tree property and ITP (also called the super tree property) are generalizations of the tree property that characterize strong compactness and supercompactness up to inaccessibility. That is, an inaccessible cardinal $\kappa $ is strongly compact if and only if the strong tree property holds at $\kappa $, and supercompact if and only if ITP holds at $\kappa $. We present several results motivated by the problem of obtaining the strong tree property and ITP at many successive cardinals simultaneously; these results focus on the successors of singular cardinals. We describe a general class of forcings that will obtain the strong tree property and ITP at the successor of a singular cardinal of any cofinality. Generalizing a result of Neeman about the tree property, we show that it is consistent for ITP to hold at $\aleph _n$ for all $2 \leq n < \omega $ simultaneously with the strong tree property at $\aleph _{\omega +1}$; we also show that it is consistent for ITP to hold at $\aleph _n$ for all $3 < n < \omega $ and at $\aleph _{\omega +1}$ simultaneously. Finally, turning our attention to singular cardinals of uncountable cofinality, we show that it is consistent for the strong and super tree properties to hold at successors of singulars of multiple cofinalities simultaneously.
This paper assembles a unifying framework encompassing a wide variety of mathematical instruments used to compare different theories. The main theme will be the idea that theory comparison techniques are most easily grasped and organized through the lens of category theory. The paper develops a table of different equivalence relations between theories and then answers many of the questions about how those equivalence relations are themselves related to each other. We show that Morita equivalence fits into this framework and provide answers to questions left open in Barrett and Halvorson [4]. We conclude by setting up a diagram of known relationships and leave open some questions for future work.
We present a novel treatment of set theory in a four-valued paraconsistent and paracomplete logic, i.e., a logic in which propositions can be both true and false, and neither true nor false. Our approach is a significant departure from previous research in paraconsistent set theory, which has almost exclusively been motivated by a desire to avoid Russell’s paradox and fulfil naive comprehension. Instead, we prioritise setting up a system with a clear ontology of non-classical sets, which can be used to reason informally about incomplete and inconsistent phenomena, and is sufficiently similar to ${\mathrm {ZFC}}$ to enable the development of interesting mathematics.
We propose an axiomatic system ${\mathrm {BZFC}}$, obtained by analysing the ${\mathrm {ZFC}}$-axioms and translating them to a four-valued setting in a careful manner, avoiding many of the obstacles encountered by other attempted formalizations. We introduce the anti-classicality axiom postulating the existence of non-classical sets, and prove a surprising results stating that the existence of a single non-classical set is sufficient to produce any other type of non-classical set.
Our theory is naturally bi-interpretable with ${\mathrm {ZFC}}$, and provides a philosophically satisfying view in which non-classical sets can be seen as a natural extension of classical ones, in a similar way to the non-well-founded sets of Peter Aczel [1].
Finally, we provide an interesting application concerning Tarski semantics, showing that the classical definition of the satisfaction relation yields a logic precisely reflecting the non-classicality in the meta-theory.
We define $\Psi $-autoreducible sets given an autoreduction procedure $\Psi $. Then, we show that for any $\Psi $, a measurable class of $\Psi $-autoreducible sets has measure zero. Using this, we show that classes of cototal, uniformly introenumerable, introenumerable, and hyper-cototal enumeration degrees all have measure zero.
By analyzing the arithmetical complexity of the classes of cototal sets and cototal enumeration degrees, we show that weakly 2-random sets cannot be cototal and weakly 3-random sets cannot be of cototal enumeration degree. Then, we see that this result is optimal by showing that there exists a 1-random cototal set and a 2-random set of cototal enumeration degree. For uniformly introenumerable degrees and introenumerable degrees, we utilize $\Psi $-autoreducibility again to show the optimal result that no weakly 3-random sets can have introenumerable enumeration degree. We also show that no 1-random set can be introenumerable.
A Polish space is not always homeomorphic to a computably presented Polish space. In this article, we examine degrees of non-computability of presenting homeomorphic copies of compact Polish spaces. We show that there exists a $\mathbf {0}'$-computable low$_3$ compact Polish space which is not homeomorphic to a computable one, and that, for any natural number $n\geq 2$, there exists a Polish space $X_n$ such that exactly the high$_{n}$-degrees are required to present the homeomorphism type of $X_n$. Along the way we investigate the computable aspects of Čech homology groups. We also show that no compact Polish space has a least presentation with respect to Turing reducibility.
I continue the study of the blurry HOD hierarchy. The technically most involved result is that the theory ZFC + “$\aleph _\omega $ is a strong limit cardinal and $\aleph _{\omega +1}$ is the least leap” is equiconsistent with the theory ZFC + “there is a measurable cardinal.”
We construct divergent models of $\mathsf {AD}^+$ along with the failure of the Continuum Hypothesis ($\mathsf {CH}$) under various assumptions. Divergent models of $\mathsf {AD}^+$ play an important role in descriptive inner model theory; all known analyses of HOD in $\mathsf {AD}^+$ models (without extra iterability assumptions) are carried out in the region below the existence of divergent models of $\mathsf {AD}^+$. Our results are the first step toward resolving various open questions concerning the length of definable prewellorderings of the reals and principles implying $\neg \mathsf {CH}$, like $\mathsf {MM}$, that divergent models shed light on, see Question 5.1.
We generalise the properties $\mathsf {OP}$, $\mathsf {IP}$, k-$\mathsf {TP}$, $\mathsf {TP}_{1}$, k-$\mathsf {TP}_{2}$, $\mathsf {SOP}_{1}$, $\mathsf {SOP}_{2}$, and $\mathsf {SOP}_{3}$ to positive logic, and prove various implications and equivalences between them. We also provide a characterisation of stability in positive logic in analogy with the one in full first-order logic, both on the level of formulas and on the level of theories. For simple theories there are the classically equivalent definitions of not having $\mathsf {TP}$ and dividing having local character, which we prove to be equivalent in positive logic as well. Finally, we show that a thick theory T has $\mathsf {OP}$ iff it has $\mathsf {IP}$ or $\mathsf {SOP}_{1}$ and that T has $\mathsf {TP}$ iff it has $\mathsf {SOP}_{1}$ or $\mathsf {TP}_{2}$, analogous to the well-known results in full first-order logic where $\mathsf {SOP}_{1}$ is replaced by $\mathsf {SOP}$ in the former and by $\mathsf {TP}_{1}$ in the latter. Our proofs of these final two theorems are new and make use of Kim-independence.
A terminating sequent calculus for intuitionistic propositional logic is obtained by modifying the R$\supset $ rule of the labelled sequent calculus $\mathbf {G3I}$. This is done by adding a variant of the principle of a fortiori in the left-hand side of the premiss of the rule. In the resulting calculus, called ${\mathbf {G3I}}_{\mathbf {t}}$, derivability of any given sequent is directly decidable by root-first proof search, without any extra device such as loop-checking. In the negative case, the failed proof search gives a finite countermodel to the sequent on a reflexive, transitive, and Noetherian Kripke frame. As a byproduct, a direct proof of faithfulness of the embedding of intuitionistic logic into Grzegorcyk logic is obtained.
We study cofinal systems of finite subsets of $\omega _1$. We show that while such systems can be NIP, they cannot be defined in an NIP structure. We deduce a positive answer to a question of Chernikov and Simon from 2013: In an NIP theory, any uncountable externally definable set contains an infinite definable subset. A similar result holds for larger cardinals.
The Lovász local lemma (LLL) is a technique from combinatorics for proving existential results. There are many different versions of the LLL. One of them, the lefthanded local lemma, is particularly well suited for applications to two player games. There are also constructive and computable versions of the LLL. The chief object of this thesis is to prove an effective version of the lefthanded local lemma and to apply it to effectivise constructions of non-repetitive sequences.
The second goal of this thesis is to categorize some classes of cohesive powers. We completely describe both the isomorphism types of cohesive powers of equivalence structures and injection structures, as well as clarify the relationship between these cohesive powers and their original structures. We also describe the finite condensation of cohesive powers of computable copies of the integers as a linear order by cohesive sets whose complement are computably enumerable.
Finally, we investigate the possibility of decomposing problems in the Weihrauch degrees into a product of first order part and second order part. We give a preliminary result in this direction.
Computability theoretic aspects of Polish metric spaces are studied by adapting notions and methods of computable structure theory. In this dissertation, we mainly investigate index sets and classification problems for computably presentable Polish metric spaces. We find the complexity of a number of index sets, isomorphism problems, and embedding problems for computably presentable metric spaces. We also provide several computable structure theory results related to some classical Polish metric spaces such as the Urysohn space $\mathbb {U}$, the Cantor space $2^{\mathbb {N}}$, the Baire space $\mathbb {N}^{\mathbb {N}}$, and spaces of continuous functions.
There is a balance between the amount of (weak) indestructibility one can have and the amount of strong cardinals. It’s consistent relative to large cardinals to have lots of strong cardinals and all of their degrees of strength are weakly indestructible. But this necessitates the destructibility of the partially strong cardinals. Guaranteeing the indestructibility of the partially strong cardinals is shown to be harder. In particular, this work establishes an equiconsistency between:
1. a proper class of cardinals that are strong reflecting strongs; and
2. weak indestructibility for (κ+2)-strength for all cardinals κ in the presence of a proper class of strong cardinals.
These have a much higher consistency strength than:
3. weak indestructibility for all degrees of strength for a proper class of strong cardinals.
This discrepancy holds even if we weaken (2) from the presence of a proper class to just two strong cardinals. (2) is also equivalent to weak indestructibility for all λ-strength for λ far beyond (κ+2); well beyond the next measurable limit of measurables above κ, but before the next μ that is (μ+2)-strong.
One direction of the equiconsistency of (1) and (2) is proven using forcing and the other using core model techniques from inner model theory. Additionally, connections between weak indestructibility and the reflection properties associated with Woodin cardinals are discussed, and similar results are derived for supercompacts and supercompacts reflecting supercompacts.
We study ordered groups in the context of both algebra and computability. Ordered groups are groups that admit a linear order that is compatible with the group operation. We explore some properties of ordered groups and discuss some related topics. We prove results about the semidirect product in relation to orderability and computability. In particular, we give a criteria for when a semidirect product of orderable groups is orderable and for when a semidirect product is computably categorical. We also give an example of a semidirect product that has the halting set coded into its multiplication structure but it is possible to construct a computable presentation of this semidirect product.
We examine a family of orderable groups that admit exactly countably many orders and show that their space of orders has arbitrary finite Cantor–Bendixson rank. Furthermore, this family of groups is also shown to be computably categorical, which in particular will allow us to conclude that any computable presentation of the groups does not admit any noncomputable orders. Lastly, we construct an example of an orderable computable group with no computable Archimedean orders but at least one computable non-Archimedean order.
We study the complexities of isometry and isomorphism classes of separable Banach spaces in the Polish spaces of Banach spaces, recently introduced and investigated by the authors in [14]. We obtain sharp results concerning the most classical separable Banach spaces.
We prove that the infinite-dimensional separable Hilbert space is characterized as the unique separable infinite-dimensional Banach space whose isometry class is closed, and also as the unique separable infinite-dimensional Banach space whose isomorphism class is $F_\sigma $. For $p\in \left [1,2\right )\cup \left (2,\infty \right )$, we show that the isometry classes of $L_p[0,1]$ and $\ell _p$ are $G_\delta $-complete sets and $F_{\sigma \delta }$-complete sets, respectively. Then we show that the isometry class of $c_0$ is an $F_{\sigma \delta }$-complete set.
Additionally, we compute the complexities of many other natural classes of separable Banach spaces; for instance, the class of separable $\mathcal {L}_{p,\lambda +}$-spaces, for $p,\lambda \geq 1$, is shown to be a $G_\delta $-set, the class of superreflexive spaces is shown to be an $F_{\sigma \delta }$-set, and the class of spaces with local $\Pi $-basis structure is shown to be a $\boldsymbol {\Sigma }^0_6$-set. The paper is concluded with many open problems and suggestions for a future research.