We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We introduce and study (weakly) semi-equational theories, generalizing equationality in stable theories (in the sense of Srour) to the NIP context. In particular, we establish a connection to distality via one-sided strong honest definitions; demonstrate that certain trees are semi-equational, while algebraically closed valued fields are not weakly semi-equational; and obtain a general criterion for weak semi-equationality of an expansion of a distal structure by a new predicate.
In an article published in 1974, Menas conjectured that any stationary subset of can be split in many pairwise disjoint stationary subsets. Even though the conjecture was shown long ago by Baumgartner and Taylor to be consistently false, it is still haunting papers on . In which situations does it hold? How much of it can be proven in ZFC? We start with an abridged history of the conjecture, then we formulate a new version of it, and finally we keep weakening this new assertion until, building on the work of Usuba, we hit something we can prove.
${\mathsf {CAC\ for\ trees}}$ is the statement asserting that any infinite subtree of $\mathbb {N}^{<\mathbb {N}}$ has an infinite path or an infinite antichain. In this paper, we study the computational strength of this theorem from a reverse mathematical viewpoint. We prove that ${\mathsf {CAC\ for\ trees}}$ is robust, that is, there exist several characterizations, some of which already appear in the literature, namely, the statement $\mathsf {SHER}$ introduced by Dorais et al. [8], and the statement $\mathsf {TAC}+\mathsf {B}\Sigma ^0_2$ where $\mathsf {TAC}$ is the tree antichain theorem introduced by Conidis [6]. We show that ${\mathsf {CAC\ for\ trees}}$ is computationally very weak, in that it admits probabilistic solutions.
We present recent results on the model companions of set theory, placing them in the context of a current debate in the philosophy of mathematics. We start by describing the dependence of the notion of model companionship on the signature, and then we analyze this dependence in the specific case of set theory. We argue that the most natural model companions of set theory describe (as the signature in which we axiomatize set theory varies) theories of $H_{\kappa ^+}$, as $\kappa $ ranges among the infinite cardinals. We also single out $2^{\aleph _0}=\aleph _2$ as the unique solution of the continuum problem which can (and does) belong to some model companion of set theory (enriched with large cardinal axioms). While doing so we bring to light that set theory enriched by large cardinal axioms in the range of supercompactness has as its model companion (with respect to its first order axiomatization in certain natural signatures) the theory of $H_{\aleph _2}$ as given by a strong form of Woodin’s axiom $(*)$ (which holds assuming $\mathsf {MM}^{++}$). Finally this model-theoretic approach to set-theoretic validities is explained and justified in terms of a form of maximality inspired by Hilbert’s axiom of completeness.
We study for each computably bounded $\Pi ^0_1$ class P the set of degrees of c.e. paths in P. We show, amongst other results, that for every c.e. degree a there is a perfect $\Pi ^0_1$ class where all c.e. members have degree a. We also show that every $\Pi ^0_1$ set of c.e. indices is realized in some perfect $\Pi ^0_1$ class, and classify the sets of c.e. degrees which can be realized in some $\Pi ^0_1$ class as exactly those with a computable representation.
We continue with the study of the Katětov order on MAD families. We prove that Katětov maximal MAD families exist under $\mathfrak {b=c}$ and that there are no Katětov-top MAD families assuming $\mathfrak {s\leq b}.$ This improves previously known results from the literature. We also answer a problem form Arciga, Hrušák, and Martínez regarding Katětov maximal MAD families.
We obtain, for the first time, a modular many-valued semantics for combined logics, which is built directly from many-valued semantics for the logics being combined, by means of suitable universal operations over partial non-deterministic logical matrices. Our constructions preserve finite-valuedness in the context of multiple-conclusion logics, whereas, unsurprisingly, it may be lost in the context of single-conclusion logics. Besides illustrating our constructions over a wide range of examples, we also develop concrete applications of our semantic characterizations, namely regarding the semantics of strengthening a given many-valued logic with additional axioms, the study of conditions under which a given logic may be seen as a combination of simpler syntactically defined fragments whose calculi can be obtained independently and put together to form a calculus for the whole logic, and also general conditions for decidability to be preserved by the combination mechanism.
We initiate the study of computable presentations of real and complex C*-algebras under the program of effective metric structure theory. With the group situation as a model, we develop corresponding notions of recursive presentations and word problems for C*-algebras, and show some analogous results hold in this setting. Famously, every finitely generated group with a computable presentation is computably categorical, but we provide a counterexample in the case of C*-algebras. On the other hand, we show every finite-dimensional C*-algebra is computably categorical.
We present a proof system for a multimode and multimodal logic, which is based on our previous work on modal Martin-Löf type theory. The specification of modes, modalities, and implications between them is given as a mode theory, i.e., a small 2-category. The logic is extended to a lambda calculus, establishing a Curry–Howard correspondence.
A classical theorem of Balcar, Pelant, and Simon says that there is a base matrix of height ${\mathfrak h}$, where ${\mathfrak h}$ is the distributivity number of ${\cal P} (\omega ) / {\mathrm {fin}}$. We show that if the continuum ${\mathfrak c}$ is regular, then there is a base matrix of height ${\mathfrak c}$, and that there are base matrices of any regular uncountable height $\leq {\mathfrak c}$ in the Cohen and random models. This answers questions of Fischer, Koelbing, and Wohofsky.
We show that Katětov and Rudin–Blass orders on summable tall ideals coincide. We prove that Katětov order on summable tall ideals is Galois–Tukey equivalent to $(\omega ^\omega ,\le ^*)$. It follows that Katětov order on summable tall ideals is upwards directed which answers a question of Minami and Sakai. In addition, we prove that ${l_\infty }$ is Borel bireducible to an equivalence relation induced by Katětov order on summable tall ideals.
Given a cofinal cardinal function $h\in {}^{\kappa }\kappa $ for $\kappa $ inaccessible, we consider the dominating h-localisation number, that is, the least cardinality of a dominating set of h-slaloms such that every $\kappa $-real is localised by a slalom in the dominating set. It was proved in [3] that the dominating localisation numbers can be consistently different for two functions h (the identity function and the power function). We will construct a $\kappa ^+$-sized family of functions h and their corresponding localisation numbers, and use a ${\leq }\kappa $-supported product of a cofinality-preserving forcing to prove that any simultaneous assignment of these localisation numbers to cardinals above $\kappa $ is consistent. This answers an open question from [3].
For which infinite cardinals $\kappa $ is there a partition of the real line ${\mathbb R}$ into precisely $\kappa $ Borel sets? Work of Lusin, Souslin, and Hausdorff shows that ${\mathbb R}$ can be partitioned into $\aleph _1$ Borel sets. But other than this, we show that the spectrum of possible sizes of partitions of ${\mathbb R}$ into Borel sets can be fairly arbitrary. For example, given any $A \subseteq \omega $ with $0,1 \in A$, there is a forcing extension in which ${A = \{ n :\, \text {there is a partition of } {{\mathbb R}} \text { into }\aleph _n\text { Borel sets}\}}$. We also look at the corresponding question for partitions of ${\mathbb R}$ into closed sets. We show that, like with partitions into Borel sets, the set of all uncountable $\kappa $ such that there is a partition of ${\mathbb R}$ into precisely $\kappa $ closed sets can be fairly arbitrary.
We can measure the complexity of a logical formula by counting the number of alternations between existential and universal quantifiers. Suppose that an elementary first-order formula $\varphi $ (in $\mathcal {L}_{\omega ,\omega }$) is equivalent to a formula of the infinitary language $\mathcal {L}_{\infty ,\omega }$ with n alternations of quantifiers. We prove that $\varphi $ is equivalent to a finitary formula with n alternations of quantifiers. Thus using infinitary logic does not allow us to express a finitary formula in a simpler way.
The stable core, an inner model of the form $\langle L[S],\in , S\rangle $ for a simply definable predicate S, was introduced by the first author in [8], where he showed that V is a class forcing extension of its stable core. We study the structural properties of the stable core and its interactions with large cardinals. We show that the $\operatorname {GCH} $ can fail at all regular cardinals in the stable core, that the stable core can have a discrete proper class of measurable cardinals, but that measurable cardinals need not be downward absolute to the stable core. Moreover, we show that, if large cardinals exist in V, then the stable core has inner models with a proper class of measurable limits of measurables, with a proper class of measurable limits of measurable limits of measurables, and so forth. We show this by providing a characterization of natural inner models $L[C_1, \dots , C_n]$ for specially nested class clubs $C_1, \dots , C_n$, like those arising in the stable core, generalizing recent results of Welch [29].
We refine results of Gannon [6, Theorem 4.7] and Simon [22, Lemma 2.8] on convergence of Morley sequences. We then introduce the notion of eventual$NIP$, as a property of a model, and prove a variant of [15, Corollary 2.2]. Finally, we give new characterizations of generically stable types (for countable theories) and reinforce the main result of Pillay [17] on the model-theoretic meaning of Grothendieck’s double limit theorem.
Computable analysis provides ways of representing points in a topological space, and therefore of defining a notion of computable points of the space. In this article, we investigate when two topologies on the same space induce different sets of computable points. We first study a purely topological version of the problem, which is to understand when two topologies are not $\sigma $-homeomorphic. We obtain a characterization leading to an effective version, and we prove that two topologies satisfying this condition induce different sets of computable points. Along the way, we propose an effective version of the Baire category theorem which captures the construction technique, and enables one to build points satisfying properties that are co-meager with respect to a topology, and are computable with respect to another topology. Finally, we generalize the result to three topologies and give an application to prove that certain sets do not have computable type, which means that they have a homeomorphic copy that is semicomputable but not computable.
We develop a method for showing that various modal logics that are valid in their countably generated canonical Kripke frames must also be valid in their uncountably generated ones. This is applied to many systems, including the logics of finite width, and a broader class of multimodal logics of ‘finite achronal width’ that are introduced here.
Sedlár and Vigiani [18] have developed an approach to propositional epistemic logics wherein (i) an agent’s beliefs are closed under relevant implication and (ii) the agent is located in a classical possible world (i.e., the non-modal fragment is classical). Here I construct first-order extensions of these logics using the non-Tarskian interpretation of the quantifiers introduced by Mares and Goldblatt [12], and later extended to quantified modal relevant logics by Ferenz [6]. Modular soundness and completeness are proved for constant domain semantics, using non-general frames with Mares–Goldblatt truth conditions. I further detail the relation between the demand that classical possible worlds have Tarskian truth conditions and incompleteness results in quantified relevant logics.
We study the embedding property in the category of sorted profinite groups. We introduce a notion of the sorted embedding property (SEP), analogous to the embedding property for profinite groups. We show that any sorted profinite group has a universal SEP-cover. Our proof gives an alternative proof for the existence of a universal embedding cover of a profinite group. Also our proof works for any full subcategory of the sorted profinite groups, which is closed under taking finite quotients, fibre products, and inverse limits. We also show that any sorted profinite group having SEP has a sorted complete system whose theory is $\omega $-categorical and $\omega $-stable under the assumption that the set of sorts is countable.