To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $\kappa $ be a regular uncountable cardinal, and a cardinal greater than or equal to $\kappa $. Revisiting a celebrated result of Shelah, we show that if is close to $\kappa $ and (= the least size of a cofinal subset of ) is greater than , then can be represented (in the sense of pcf theory) as a pseudopower. This can be used to obtain optimal results concerning the splitting problem. For example we show that if and , then no $\kappa $-complete ideal on is weakly -saturated.
Any intermediate propositional logic (i.e., a logic including intuitionistic logic and contained in classical logic) can be extended to a calculus with epsilon- and tau-operators and critical formulas. For classical logic, this results in Hilbert’s $\varepsilon $-calculus. The first and second $\varepsilon $-theorems for classical logic establish conservativity of the $\varepsilon $-calculus over its classical base logic. It is well known that the second $\varepsilon $-theorem fails for the intuitionistic $\varepsilon $-calculus, as prenexation is impossible. The paper investigates the effect of adding critical $\varepsilon $- and $\tau $-formulas and using the translation of quantifiers into $\varepsilon $- and $\tau $-terms to intermediate logics. It is shown that conservativity over the propositional base logic also holds for such intermediate ${\varepsilon \tau }$-calculi. The “extended” first $\varepsilon $-theorem holds if the base logic is finite-valued Gödel–Dummett logic, and fails otherwise, but holds for certain provable formulas in infinite-valued Gödel logic. The second $\varepsilon $-theorem also holds for finite-valued first-order Gödel logics. The methods used to prove the extended first $\varepsilon $-theorem for infinite-valued Gödel logic suggest applications to theories of arithmetic.
We show that if a countable structure M in a finite relational language is not cellular, then there is an age-preserving $N \supseteq M$ such that $2^{\aleph _0}$ many structures are bi-embeddable with N. The proof proceeds by a case division based on mutual algebraicity.
Descriptive set theory and computability theory are closely-related fields of logic; both are oriented around a notion of descriptive complexity. However, the two fields typically consider objects of very different sizes; computability theory is principally concerned with subsets of the naturals, while descriptive set theory is interested primarily in subsets of the reals. In this paper, we apply a generalization of computability theory, admissible recursion theory, to consider the relative complexity of notions that are of interest in descriptive set theory. In particular, we examine the perfect set property, determinacy, the Baire property, and Lebesgue measurability. We demonstrate that there is a separation of descriptive complexity between the perfect set property and determinacy for analytic sets of reals; we also show that the Baire property and Lebesgue measurability are both equivalent in complexity to the property of simply being a Borel set, for $\boldsymbol {\Sigma ^{1}_{2}}$ sets of reals.
Necessary and sufficient conditions are presented for the (first-order) theory of a universal class of algebraic structures (algebras) to have a model completion, extending a characterization provided by Wheeler. For varieties of algebras that have equationally definable principal congruences and the compact intersection property, these conditions yield a more elegant characterization obtained (in a slightly more restricted setting) by Ghilardi and Zawadowski. Moreover, it is shown that under certain further assumptions on congruence lattices, the existence of a model completion implies that the variety has equationally definable principal congruences. This result is then used to provide necessary and sufficient conditions for the existence of a model completion for theories of Hamiltonian varieties of pointed residuated lattices, a broad family of varieties that includes lattice-ordered abelian groups and MV-algebras. Notably, if the theory of a Hamiltonian variety of pointed residuated lattices has a model completion, it must have equationally definable principal congruences. In particular, the theories of lattice-ordered abelian groups and MV-algebras do not have a model completion, as first proved by Glass and Pierce, and Lacava, respectively. Finally, it is shown that certain varieties of pointed residuated lattices generated by their linearly ordered members, including lattice-ordered abelian groups and MV-algebras, can be extended with a binary operation to obtain theories that do have a model completion.
Is it possible to maintain classical logic, stay close to classical semantics, and yet accept that language might be semantically indeterminate? The article gives an affirmative answer by Ramsifying classical semantics, which yields a new semantic theory that remains much closer to classical semantics than supervaluationism but which at the same time avoids the problematic classical presupposition of semantic determinacy. The resulting Ramsey semantics is developed in detail, it is shown to supply a classical concept of truth and to fully support the rules and metarules of classical logic, and it is applied to vague terms as well as to theoretical or open-ended terms from mathematics and science. The theory also demonstrates how diachronic or synchronic interpretational continuity across languages is compatible with semantic indeterminacy.
Matthias Schröder has asked the question whether there is a weakest discontinuous problem in the topological version of the Weihrauch lattice. Such a problem can be considered as the weakest unsolvable problem. We introduce the discontinuity problem, and we show that it is reducible exactly to the effectively discontinuous problems, defined in a suitable way. However, in which sense this answers Schröder’s question sensitively depends on the axiomatic framework that is chosen, and it is a positive answer if we work in Zermelo–Fraenkel set theory with dependent choice and the axiom of determinacy $\mathsf {AD}$. On the other hand, using the full axiom of choice, one can construct problems which are discontinuous, but not effectively so. Hence, the exact situation at the bottom of the Weihrauch lattice sensitively depends on the axiomatic setting that we choose. We prove our result using a variant of Wadge games for mathematical problems. While the existence of a winning strategy for Player II characterizes continuity of the problem (as already shown by Nobrega and Pauly), the existence of a winning strategy for Player I characterizes effective discontinuity of the problem. By Weihrauch determinacy we understand the condition that every problem is either continuous or effectively discontinuous. This notion of determinacy is a fairly strong notion, as it is not only implied by the axiom of determinacy $\mathsf {AD}$, but it also implies Wadge determinacy. We close with a brief discussion of generalized notions of productivity.
Evaluative studies of inductive inferences have been pursued extensively with mathematical rigor in many disciplines, such as statistics, econometrics, computer science, and formal epistemology. Attempts have been made in those disciplines to justify many different kinds of inductive inferences, to varying extents. But somehow those disciplines have said almost nothing to justify a most familiar kind of induction, an example of which is this: “We’ve seen this many ravens and they all are black, so all ravens are black.” This is enumerative induction in its full strength. For it does not settle with a weaker conclusion (such as “the ravens observed in the future will all be black”); nor does it proceed with any additional premise (such as the statistical IID assumption). The goal of this paper is to take some initial steps toward a justification for the full version of enumerative induction, against counterinduction, and against the skeptical policy. The idea is to explore various epistemic ideals, mathematically defined as different modes of convergence to the truth, and look for one that is weak enough to be achievable and strong enough to justify a norm that governs both the long run and the short run. So the proposal is learning-theoretic in essence, but a Bayesian version is developed as well.
An oracle A is low-for-speed if it is unable to speed up the computation of a set which is already computable: if a decidable language can be decided in time $t(n)$ using A as an oracle, then it can be decided without an oracle in time $p(t(n))$ for some polynomial p. The existence of a set which is low-for-speed was first shown by Bayer and Slaman who constructed a non-computable computably enumerable set which is low-for-speed. In this paper we answer a question previously raised by Bienvenu and Downey, who asked whether there is a minimal degree which is low-for-speed. The standard method of constructing a set of minimal degree via forcing is incompatible with making the set low-for-speed; but we are able to use an interesting new combination of forcing and full approximation to construct a set which is both of minimal degree and low-for-speed.
The use of the symbol $\mathbin {\boldsymbol {\vee }}$ for disjunction in formal logic is ubiquitous. Where did it come from? The paper details the evolution of the symbol $\mathbin {\boldsymbol {\vee }}$ in its historical and logical context. Some sources say that disjunction in its use as connecting propositions or formulas was introduced by Peano; others suggest that it originated as an abbreviation of the Latin word for “or,” vel. We show that the origin of the symbol $\mathbin {\boldsymbol {\vee }}$ for disjunction can be traced to Whitehead and Russell’s pre-Principia work in formal logic. Because of Principia’s influence, its notation was widely adopted by philosophers working in logic (the logical empiricists in the 1920s and 1930s, especially Carnap and early Quine). Hilbert’s adoption of $\mathbin {\boldsymbol {\vee }}$ in his Grundzüge der theoretischen Logik guaranteed its widespread use by mathematical logicians. The origins of other logical symbols are also discussed.
We improve on and generalize a 1960 result of Maltsev. For a field F, we denote by $H(F)$ the Heisenberg group with entries in F. Maltsev showed that there is a copy of F defined in $H(F)$, using existential formulas with an arbitrary non-commuting pair of elements as parameters. We show that F is interpreted in $H(F)$ using computable $\Sigma _1$ formulas with no parameters. We give two proofs. The first is an existence proof, relying on a result of Harrison-Trainor, Melnikov, R. Miller, and Montalbán. This proof allows the possibility that the elements of F are represented by tuples in $H(F)$ of no fixed arity. The second proof is direct, giving explicit finitary existential formulas that define the interpretation, with elements of F represented by triples in $H(F)$. Looking at what was used to arrive at this parameter-free interpretation of F in $H(F)$, we give general conditions sufficient to eliminate parameters from interpretations.
Francesco Berto proposed a logic for imaginative episodes. The logic establishes certain (in)validities concerning episodic imagination. They are not all equally plausible as principles of episodic imagination. The logic also does not model that the initial input of an imaginative episode is deliberately chosen. Stit-imagination logic models the imagining agent’s deliberate choice of the content of their imagining. However, the logic does not model the episodic nature of imagination. The present paper combines the two logics, thereby modelling imaginative episodes with deliberately chosen initial input. We use a combination of stit-imagination logic and a content-sensitive variably strict conditional à la Berto, for which we give a Chellas–Segerberg semantics. The proposed semantics has the following advantages over Berto’s: (i) we model the deliberate choice of initial input of imaginative episodes (in a multi-agent setting), (ii) we show frame correspondences for axiomatic analogues of Berto’s validities, which (iii) allows the possibility to disregard axioms that might be considered not plausible as principles concerning imaginative episodes. We do not take a definite stance on whether these should be disregarded but give reasons for why one might want to disregard them. Finally, we compare our semantics briefly with recent work, which aims to model voluntary imagination, and argue that our semantics models different aspects.
In this paper I argue for an association between impurity and explanatory power in contemporary mathematics. This proposal is defended against the ancient and influential idea that purity and explanation go hand-in-hand (Aristotle, Bolzano) and recent suggestions that purity/impurity ascriptions and explanatory power are more or less distinct (Section 1). This is done by analyzing a central and deep result of additive number theory, Szemerédi’s theorem, and various of its proofs (Section 2). In particular, I focus upon the radically impure (ergodic) proof due to Furstenberg (Section 3). Furstenberg’s ergodic proof is striking because it utilizes intuitively foreign and infinitary resources to prove a finitary combinatorial result and does so in a perspicuous fashion. I claim that Furstenberg’s proof is explanatory in light of its clear expression of a crucial structural result, which provides the “reason why” Szemerédi’s theorem is true. This is, however, rather surprising: how can such intuitively different conceptual resources “get a grip on” the theorem to be proved? I account for this phenomenon by articulating a new construal of the content of a mathematical statement, which I call structural content (Section 4). I argue that the availability of structural content saves intuitive epistemic distinctions made in mathematical practice and simultaneously explicates the intervention of surprising and explanatorily rich conceptual resources. Structural content also disarms general arguments for thinking that impurity and explanatory power might come apart. Finally, I sketch a proposal that, once structural content is in hand, impure resources lead to explanatory proofs via suitably understood varieties of simplification and unification (Section 5).
The Gödel translation provides an embedding of the intuitionistic logic $\mathsf {IPC}$ into the modal logic $\mathsf {Grz}$, which then embeds into the modal logic $\mathsf {GL}$ via the splitting translation. Combined with Solovay’s theorem that $\mathsf {GL}$ is the modal logic of the provability predicate of Peano Arithmetic $\mathsf {PA}$, both $\mathsf {IPC}$ and $\mathsf {Grz}$ admit provability interpretations. When attempting to ‘lift’ these results to the monadic extensions $\mathsf {MIPC}$, $\mathsf {MGrz}$, and $\mathsf {MGL}$ of these logics, the same techniques no longer work. Following a conjecture made by Esakia, we add an appropriate version of Casari’s formula to these monadic extensions (denoted by a ‘+’), obtaining that the Gödel translation embeds $\mathsf {M^{+}IPC}$ into $\mathsf {M^{+}Grz}$ and the splitting translation embeds $\mathsf {M^{+}Grz}$ into $\mathsf {MGL}$. As proven by Japaridze, Solovay’s result extends to the monadic system $\mathsf {MGL}$, which leads us to a provability interpretation of both $\mathsf {M^{+}IPC}$ and $\mathsf {M^{+}Grz}$.
This article provides an algebraic study of the propositional system $\mathtt {InqB}$ of inquisitive logic. We also investigate the wider class of $\mathtt {DNA}$-logics, which are negative variants of intermediate logics, and the corresponding algebraic structures, $\mathtt {DNA}$-varieties. We prove that the lattice of $\mathtt {DNA}$-logics is dually isomorphic to the lattice of $\mathtt {DNA}$-varieties. We characterise maximal and minimal intermediate logics with the same negative variant, and we prove a suitable version of Birkhoff’s classic variety theorems. We also introduce locally finite $\mathtt {DNA}$-varieties and show that these varieties are axiomatised by the analogues of Jankov formulas. Finally, we prove that the lattice of extensions of $\mathtt {InqB}$ is dually isomorphic to the ordinal $\omega +1$ and give an axiomatisation of these logics via Jankov $\mathtt {DNA}$-formulas. This shows that these extensions coincide with the so-called inquisitive hierarchy of [9].1
In his paper on the incompleteness theorems, Gödel seemed to say that a direct way of constructing a formula that says of itself that it is unprovable might involve a faulty circularity. In this note, it is proved that ‘direct’ self-reference can actually be used to prove his result.
Alongside the analogy between maximal ideals and complete theories, the Jacobson radical carries over from ideals of commutative rings to theories of propositional calculi. This prompts a variant of Lindenbaum’s Lemma that relates classical validity and intuitionistic provability, and the syntactical counterpart of which is Glivenko’s Theorem. The Jacobson radical in fact turns out to coincide with the classical deductive closure. As a by-product we obtain a possible interpretation in logic of the axioms-as-rules conservation criterion for a multi-conclusion Scott-style entailment relation over a single-conclusion one.
Invariance criteria are widely accepted as a means to demarcate the logical vocabulary of a language. In previous work, I proposed a framework of “semantic constraints” for model-theoretic consequence which does not rely on a strict distinction between logical and nonlogical terms, but rather on a range of constraints on models restricting the interpretations of terms in the language in different ways. In this paper I show how invariance criteria can be generalized so as to apply to semantic constraints on models. Some obviously unpalatable semantic constraints turn out to be invariant under isomorphisms. I shall connect the discussion to known counter-examples to invariance criteria for logical terms, and so the generalization will also shed light on the current existing debate on logicality. I analyse the failure of invariance to fulfil its role as a criterion for logicality, and argue that invariance conditions should best be thought of as merely methodological meta-constraints restricting the ways the model-theoretic apparatus should be used.
We show that monadic intuitionistic quantifiers admit the following temporal interpretation: “always in the future” (for $\forall $) and “sometime in the past” (for $\exists $). It is well known that Prior’s intuitionistic modal logic ${\sf MIPC}$ axiomatizes the monadic fragment of the intuitionistic predicate logic, and that ${\sf MIPC}$ is translated fully and faithfully into the monadic fragment ${\sf MS4}$ of the predicate ${\sf S4}$ via the Gödel translation. To realize the temporal interpretation mentioned above, we introduce a new tense extension ${\sf TS4}$ of ${\sf S4}$ and provide a full and faithful translation of ${\sf MIPC}$ into ${\sf TS4}$. We compare this new translation of ${\sf MIPC}$ with the Gödel translation by showing that both ${\sf TS4}$ and ${\sf MS4}$ can be translated fully and faithfully into a tense extension of ${\sf MS4}$, which we denote by ${\sf MS4.t}$. This is done by utilizing the relational semantics for these logics. As a result, we arrive at the diagram of full and faithful translations shown in Figure 1 which is commutative up to logical equivalence. We prove the finite model property (fmp) for ${\sf MS4.t}$ using algebraic semantics, and show that the fmp for the other logics involved can be derived as a consequence of the fullness and faithfulness of the translations considered.
In this paper, we use algebra-valued models to study cardinal numbers in a class of non-classical set theories. The algebra-valued models of these non-classical set theories validate the Axiom of Choice, if the ground model validates it. Though the models are non-classical, the foundations of cardinal numbers in these models are similar to those in classical set theory. For example, we show that mathematical induction, Cantor’s theorem, and the Schröder–Bernstein theorem hold in these models. We also study a few basic properties of cardinal arithmetic. In addition, the generalized continuum hypothesis is proved to be independent of these non-classical set theories.