To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the values of the higher dimensional cardinal characteristics for sets of functions $f:\omega ^\omega \to \omega ^\omega $ introduced by the second author in [8]. We prove that while the bounding numbers for these cardinals can be strictly less than the continuum, the dominating numbers cannot. We compute the bounding numbers for the higher dimensional relations in many well known models of $\neg \mathsf {CH}$ such as the Cohen, random and Sacks models and, as a byproduct show that, with one exception, for the bounding numbers there are no $\mathsf {ZFC}$ relations between them beyond those in the higher dimensional Cichoń diagram. In the case of the dominating numbers we show that in fact they collapse in the sense that modding out by the ideal does not change their values. Moreover, they are closely related to the dominating numbers $\mathfrak {d}^\lambda _\kappa $.
Minimally inconsistent LP (MiLP) is a nonmonotonic paraconsistent logic based on Graham Priest’s logic of paradox (LP). Unlike LP, MiLP purports to recover, in consistent situations, all of classical reasoning. The present paper conducts a proof-theoretic analysis of MiLP. I highlight certain properties of this logic, introduce a simple sequent system for it, and establish soundness and completeness results. In addition, I show how to use my proof system in response to a criticism of this logic put forward by J. C. Beall.
This paper generalises an argument for probabilism due to Lindley [9]. I extend the argument to a number of non-classical logical settings whose truth-values, seen here as ideal aims for belief, are in the set $\{0,1\}$, and where logical consequence $\models $ is given the “no-drop” characterization. First I will show that, in each of these settings, an agent’s credence can only avoid accuracy-domination if its canonical transform is a (possibly non-classical) probability function. In other words, if an agent values accuracy as the fundamental epistemic virtue, it is a necessary requirement for rationality that her credence have some probabilistic structure. Then I show that for a certain class of reasonable measures of inaccuracy, having such a probabilistic structure is sufficient to avoid accuracy-domination in these non-classical settings.
Several different versions of the theory of numerosities have been introduced in the literature. Here, we unify these approaches in a consistent frame through the notion of set of labels, relating numerosities with the Kiesler field of Euclidean numbers. This approach allows us to easily introduce, by means of numerosities, ordinals and their natural operations, as well as the Lebesgue measure as a counting measure on the reals.
It is known that every non-universal self-full degree in the structure of the degrees of computably enumerable equivalence relations (ceers) under computable reducibility has exactly one strong minimal cover. This leaves little room for embedding wide partial orders as initial segments using self-full degrees. We show that considerably more can be done by staying entirely inside the collection of non-self-full degrees. We show that the poset can be embedded as an initial segment of the degrees of ceers with infinitely many classes. A further refinement of the proof shows that one can also embed the free distributive lattice generated by the lower semilattice as an initial segment of the degrees of ceers with infinitely many classes.
We extract quantitative information (specifically, a rate of metastability in the sense of Terence Tao) from a proof due to Kazuo Kobayasi and Isao Miyadera, which shows strong convergence for Cesàro means of non-expansive maps on Banach spaces.
We initiate an investigation of structures on the set of real numbers having the property that path components of definable sets are definable. All o-minimal structures on $(\mathbb {R},<)$ have the property, as do all expansions of $(\mathbb {R},+,\cdot ,\mathbb {N})$. Our main analytic-geometric result is that any such expansion of $(\mathbb {R},<,+)$ by Boolean combinations of open sets (of any arities) either is o-minimal or defines an isomorph of $(\mathbb N,+,\cdot )$. We also show that any given expansion of $(\mathbb {R}, <, +,\mathbb {N})$ by subsets of $\mathbb {N}^n$ (n allowed to vary) has the property if and only if it defines all arithmetic sets. Variations arise by considering connected components or quasicomponents instead of path components.
Kristiansen and Murwanashyaka recently proved that Robinson arithmetic, Q, is interpretable in an elementary theory of full binary trees, T. We prove that, conversely, T is interpretable in Q by producing a formal interpretation of T in an elementary concatenation theory QT+, thereby also establishing mutual interpretability of T with several well-known weak essentially undecidable theories of numbers, strings, and sets. We also introduce a “hybrid” elementary theory of strings and trees, WQT*, and establish its mutual interpretability with Robinson’s weak arithmetic R, the weak theory of trees WT of Kristiansen and Murwanashyaka, and the weak concatenation theory WTCε of Higuchi and Horihata.
We obtain an array of consistency results concerning trees and stationary reflection at double successors of regular cardinals $\kappa $, updating some classical constructions in the process. This includes models of $\mathsf {CSR}(\kappa ^{++})\wedge {\sf TP}(\kappa ^{++})$ (both with and without ${\sf AP}(\kappa ^{++})$) and models of the conjunctions ${\sf SR}(\kappa ^{++}) \wedge \mathsf {wTP}(\kappa ^{++}) \wedge {\sf AP}(\kappa ^{++})$ and $\neg {\sf AP}(\kappa ^{++}) \wedge {\sf SR}(\kappa ^{++})$ (the latter was originally obtained in joint work by Krueger and the first author [9], and is here given using different methods). Analogs of these results with the failure of $\sf {SH}(\kappa ^{++})$ are given as well. Finally, we obtain all of our results with an arbitrarily large $2^\kappa $, applying recent joint work by Honzik and the third author.
In “Some Remarks on Extending and Interpreting Theories with a Partial Truth Predicate”, Reinhardt [21] famously proposed an instrumentalist interpretation of the truth theory Kripke–Feferman ($\mathrm {KF}$) in analogy to Hilbert’s program. Reinhardt suggested to view $\mathrm {KF}$ as a tool for generating “the significant part of $\mathrm {KF}$”, that is, as a tool for deriving sentences of the form $\mathrm{Tr}\ulcorner {\varphi }\urcorner $. The constitutive question of Reinhardt’s program was whether it was possible “to justify the use of nonsignificant sentences entirely within the framework of significant sentences”. This question was answered negatively by Halbach & Horsten [10] but we argue that under a more careful interpretation the question may receive a positive answer. To this end, we propose to shift attention from $\mathrm {KF}$-provably true sentences to $\mathrm {KF}$-provably true inferences, that is, we shall identify the significant part of $\mathrm {KF}$ with the set of pairs $\langle {\Gamma , \Delta }\rangle $, such that $\mathrm {KF}$ proves that if all members of $\Gamma $ are true, at least one member of $\Delta $ is true. In way of addressing Reinhardt’s question we show that the provably true inferences of suitable $\mathrm {KF}$-like theories coincide with the provable sequents of matching versions of the theory Partial Kripke–Feferman ($\mathrm {PKF}$).
Neo-Fregeanism aims to provide a possible route to knowledge of arithmetic via Hume’s principle, but this is of only limited significance if it cannot account for how the vast majority of arithmetic knowledge, accrued by ordinary people, is obtained. I argue that Hume’s principle does not capture what is ordinarily meant by numerical identity, but that we can do much better by buttressing plural logic with plural versions of the ancestral operator, obtaining natural and plausible characterizations of various key arithmetic concepts, including finiteness, equinumerosity and addition and multiplication of cardinality—revealing these to be logical concepts, and obtaining much of ordinary arithmetic knowledge as logical knowledge. Supplementing this with an abstraction principle and a simple axiom of infinity (known either empirically or modally) we obtain a full interpretation of arithmetic.
We study the notion of non-trivial elementary embeddings under the assumption that V satisfies ZFC without Power Set but with the Collection Scheme. We show that no such embedding can exist under the additional assumption that it is cofinal and either is a set or that the scheme of Dependent Choices of arbitrary length holds. We then study failures of instances of Collection in symmetric submodels of class forcings.
We provide a model theoretical and tree property-like characterization of $\lambda $-$\Pi ^1_1$-subcompactness and supercompactness. We explore the behavior of these combinatorial principles at accessible cardinals.
We introduce and study model-theoretic connected components of rings as an analogue of model-theoretic connected components of definable groups. We develop their basic theory and use them to describe both the definable and classical Bohr compactifications of rings. We then use model-theoretic connected components to explicitly calculate Bohr compactifications of some classical matrix groups, such as the discrete Heisenberg group ${\mathrm {UT}}_3({\mathbb {Z}})$, the continuous Heisenberg group ${\mathrm {UT}}_3({\mathbb {R}})$, and, more generally, groups of upper unitriangular and invertible upper triangular matrices over unital rings.
The language of linear temporal logic can be interpreted on the class of dynamic topological systems, giving rise to the intuitionistic temporal logic ${\sf ITL}^{\sf c}_{\Diamond \forall }$, recently shown to be decidable by Fernández-Duque. In this article we axiomatize this logic, some fragments, and prove completeness for several familiar spaces.
In this paper, using a propositional modal language extended with the window modality, we capture the first-order properties of various mereological theories. In this setting, $\Box \varphi $ reads all the parts (of the current object) are$\varphi $, interpreted on the models with a whole-part binary relation under various constraints. We show that all the usual mereological theories can be captured by modal formulas in our language via frame correspondence. We also correct a mistake in the existing completeness proof for a basic system of mereology by providing a new construction of the canonical model.
We introduce a sequent system which is Gentzen algebraisable with orthomodular lattices as equivalent algebraic semantics, and therefore can be viewed as a calculus for orthomodular quantum logic. Its sequents are pairs of non-associative structures, formed via a structural connective whose algebraic interpretation is the Sasaki product on the left-hand side and its De Morgan dual on the right-hand side. It is a substructural calculus, because some of the standard structural sequent rules are restricted—by lifting all such restrictions, one recovers a calculus for classical logic.
We show that, assuming the Axiom of Determinacy, every non-selfdual Wadge class can be constructed by starting with those of level $\omega _1$ (that is, the ones that are closed under Borel preimages) and iteratively applying the operations of expansion and separated differences. The proof is essentially due to Louveau, and it yields at the same time a new proof of a theorem of Van Wesep (namely, that every non-selfdual Wadge class can be expressed as the result of a Hausdorff operation applied to the open sets). The exposition is self-contained, except for facts from classical descriptive set theory.
In this paper, we give an axiomatization of the ordinal number system, in the style of Dedekind’s axiomatization of the natural number system. The latter is based on a structure $(N,0,s)$ consisting of a set N, a distinguished element $0\in N$ and a function $s\colon N\to N$. The structure in our axiomatization is a triple $(O,L,s)$, where O is a class, L is a class function defined on all s-closed ‘subsets’ of O, and s is a class function $s\colon O\to O$. In fact, we develop the theory relative to a Grothendieck-style universe (minus the power set axiom), as a way of bringing the natural and the ordinal cases under one framework. We also establish a universal property for the ordinal number system, analogous to the well-known universal property for the natural number system.
The notion of a complete type can be generalized in a natural manner to allow assigning a value in an arbitrary Boolean algebra $\mathcal {B}$ to each formula. We show some basic results regarding the effect of the properties of $\mathcal {B}$ on the behavior of such types, and show they are particularity well behaved in the case of NIP theories. In particular, we generalize the third author’s result about counting types, as well as the notion of a smooth type and extending a type to a smooth one. We then show that Keisler measures are tied to certain Boolean types and show that some of the results can thus be transferred to measures—in particular, giving an alternative proof of the fact that every measure in a dependent theory can be extended to a smooth one. We also study the stable case. We consider this paper as an invitation for more research into the topic of Boolean types.