To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The cardinal invariant $\mathfrak {hm}$ is defined as the minimum size of a family of $\mathsf {c}_{\mathsf {min}}$-monochromatic sets that cover $2^{\omega }$ (where $\mathsf {c}_{\mathsf {min}}( x,y) $ is the parity of the biggest initial segment both x and y have in common). We prove that $\mathfrak {hm}=\omega _{1}$ holds in Shelah’s model of $\mathfrak {i<u},$ so the inequality $\mathfrak {hm<u}$ is consistent with the axioms of $\mathsf {ZFC}$. This answers a question of Thilo Weinert. We prove that the diamond principle $\mathfrak {\Diamond }_{\mathfrak {d}}$ also holds in that model.
Using a variation of the rainbow construction and various pebble and colouring games, we prove that RRA, the class of all representable relation algebras, cannot be axiomatised by any first-order relation algebra theory of bounded quantifier depth. We also prove that the class At(RRA) of atom structures of representable, atomic relation algebras cannot be defined by any set of sentences in the language of RA atom structures that uses only a finite number of variables.
We show that it is independent whether club $\kappa $-Miller forcing preserves $\kappa ^{++}$. We show that under $\kappa ^{<\kappa }> \kappa $, club $\kappa $-Miller forcing collapses $\kappa ^{<\kappa }$ to $\kappa $. Answering a question by Brendle, Brooke-Taylor, Friedman and Montoya, we show that the iteration of ultrafilter $\kappa $-Miller forcing does not have the Laver property.
Ramsey algebras are an attempt to investigate Ramsey spaces generated by algebras in a purely combinatorial fashion. Previous studies have focused on the basic properties of Ramsey algebras and a few specific examples. In this article, we study the properties of Ramsey algebras from a structural point of view. For instance, we will see that isomorphic algebras have the same Ramsey algebraic properties, but elementarily equivalent algebras need not be so, as expected. We also answer an open question about Cartesian products of Ramsey algebras.
In set theory without the Axiom of Choice ($\mathsf {AC}$), we investigate the open problem of the deductive strength of statements which concern the existence of almost disjoint and maximal almost disjoint (MAD) families of infinite-dimensional subspaces of a given infinite-dimensional vector space, as well as the extension of almost disjoint families in infinite-dimensional vector spaces to MAD families.
We ask when, for a pair of structures $\mathcal {A}_1,\mathcal {A}_2$, there is a uniform effective procedure that, given copies of the two structures, unlabeled, always produces a copy of $\mathcal {A}_1$. We give some conditions guaranteeing that there is such a procedure. The conditions might suggest that for the pair of orderings $\mathcal {A}_1$ of type $\omega _1^{CK}$ and $\mathcal {A}_2$ of Harrison type, there should not be any such procedure, but, in fact, there is one. We construct an example for which there is no such procedure. The construction involves forcing. On the way to constructing our example, we prove a general result on modifying Cohen generics.
We will show that almost all nonassociative relation algebras are symmetric and integral (in the sense that the fraction of both labelled and unlabelled structures that are symmetric and integral tends to $1$), and using a Fraïssé limit, we will establish that the classes of all atom structures of nonassociative relation algebras and relation algebras both have $0$–$1$ laws. As a consequence, we obtain improved asymptotic formulas for the numbers of these structures and broaden some known probabilistic results on relation algebras.
We consider locally o-minimal structures possessing tame topological properties shared by models of DCTC and uniformly locally o-minimal expansions of the second kind of densely linearly ordered abelian groups. We derive basic properties of dimension of a set definable in the structures including the addition property, which is the dimension equality for definable maps whose fibers are equi-dimensional. A decomposition theorem into quasi-special submanifolds is also demonstrated.
We study the following natural strong variant of destroying Borel ideals: $\mathbb {P}$$+$-destroys$\mathcal {I}$ if $\mathbb {P}$ adds an $\mathcal {I}$-positive set which has finite intersection with every $A\in \mathcal {I}\cap V$. Also, we discuss the associated variants
of the star-uniformity and the star-covering numbers of these ideals.
Among other results, (1) we give a simple combinatorial characterisation when a real forcing $\mathbb {P}_I$ can $+$-destroy a Borel ideal $\mathcal {J}$; (2) we discuss many classical examples of Borel ideals, their $+$-destructibility, and cardinal invariants; (3) we show that the Mathias–Prikry, $\mathbb {M}(\mathcal {I}^*)$-generic real $+$-destroys $\mathcal {I}$ iff $\mathbb {M}(\mathcal {I}^*)\ +$-destroys $\mathcal {I}$ iff $\mathcal {I}$ can be $+$-destroyed iff $\mathrm {cov}^*(\mathcal {I},+)>\omega $; (4) we characterise when the Laver–Prikry, $\mathbb {L}(\mathcal {I}^*)$-generic real $+$-destroys $\mathcal {I}$, and in the case of P-ideals, when exactly $\mathbb {L}(\mathcal {I}^*)$$+$-destroys $\mathcal {I}$; and (5) we briefly discuss an even stronger form of destroying ideals closely related to the additivity of the null ideal.
It is a classic result in modal logic, often referred to as Jónsson-Tarski duality, that the category of modal algebras is dually equivalent to the category of descriptive frames. The latter are Kripke frames equipped with a Stone topology such that the binary relation is continuous. This duality generalizes the celebrated Stone duality for boolean algebras. Our goal is to generalize descriptive frames so that the topology is an arbitrary compact Hausdorff topology. For this, instead of working with the boolean algebra of clopen subsets of a Stone space, we work with the ring of continuous real-valued functions on a compact Hausdorff space. The main novelty is to define a modal operator on such a ring utilizing a continuous relation on a compact Hausdorff space.
Our starting point is the well-known Gelfand duality between the category ${\sf KHaus}$ of compact Hausdorff spaces and the category $\boldsymbol {\mathit {uba}\ell }$ of uniformly complete bounded archimedean $\ell $-algebras. We endow a bounded archimedean $\ell $-algebra with a modal operator, which results in the category $\boldsymbol {\mathit {mba}\ell }$ of modal bounded archimedean $\ell $-algebras. Our main result establishes a dual adjunction between $\boldsymbol {\mathit {mba}\ell }$ and the category ${\sf KHF}$ of what we call compact Hausdorff frames; that is, Kripke frames equipped with a compact Hausdorff topology such that the binary relation is continuous. This dual adjunction restricts to a dual equivalence between ${\sf KHF}$ and the reflective subcategory $\boldsymbol {\mathit {muba}\ell }$ of $\boldsymbol {\mathit {mba}\ell }$ consisting of uniformly complete objects of $\boldsymbol {\mathit {mba}\ell }$. This generalizes both Gelfand duality and Jónsson-Tarski duality.
We study the bi-embeddability and elementary bi-embeddability relation on graphs under Borel reducibility and investigate the degree spectra realized by these relations. We first give a Borel reduction from embeddability on graphs to elementary embeddability on graphs. As a consequence we obtain that elementary bi-embeddability on graphs is a $\boldsymbol {\Sigma }^1_1$ complete equivalence relation. We then investigate the algorithmic properties of this reduction. We obtain that elementary bi-embeddability on the class of computable graphs is $\Sigma ^1_1$ complete with respect to computable reducibility and show that the elementary bi-embeddability and bi-embeddability spectra realized by graphs are related.
Consider an algorithm computing in a differential field with several commuting derivations such that the only operations it performs with the elements of the field are arithmetic operations, differentiation, and zero testing. We show that, if the algorithm is guaranteed to terminate on every input, then there is a computable upper bound for the size of the output of the algorithm in terms of the size of the input. We also generalize this to algorithms working with models of good enough theories (including, for example, difference fields).
We then apply this to differential algebraic geometry to show that there exists a computable uniform upper bound for the number of components of any variety defined by a system of polynomial PDEs. We then use this bound to show the existence of a computable uniform upper bound for the elimination problem in systems of polynomial PDEs with delays.
The purpose of this paper is to compare the notion of a Grzegorczyk point introduced in [19] (and thoroughly investigated in [3, 14, 16, 18]) to the standard notions of a filter in Boolean algebras and round filter in Boolean contact algebras. In particular, we compare Grzegorczyk points to filters and ultrafilters of atomic and atomless algebras. We also prove how a certain extra axiom influences topological spaces for Grzegorczyk contact algebras. Last but not least, we do not refrain from a philosophical interpretation of the results from the paper.
$\eta $-representations are a way of coding sets in computable linear orders that were first introduced by Fellner in his thesis. Limitwise monotonic functions have been used to characterize the sets with $\eta $-representations, and give characterizations for several variations of $\eta $-representations. The one exception is the class of sets with strong $\eta $-representations, the only class where the order type of the representation is unique.
We introduce the notion of a connected approximation of a set, a variation on $\Sigma ^0_2$ approximations. We use connected approximations to give a characterization of the many-one degrees of sets with strong $\eta $-representations as well new characterizations of the variations of $\eta $-representations with known characterizations.
In this survey we discuss work of Levin and V’yugin on collections of sequences that are non-negligible in the sense that they can be computed by a probabilistic algorithm with positive probability. More precisely, Levin and V’yugin introduced an ordering on collections of sequences that are closed under Turing equivalence. Roughly speaking, given two such collections $\mathcal {A}$ and $\mathcal {B}$, $\mathcal {A}$ is below $\mathcal {B}$ in this ordering if $\mathcal {A}\setminus \mathcal {B}$ is negligible. The degree structure associated with this ordering, the Levin–V’yugin degrees (or $\mathrm {LV}$-degrees), can be shown to be a Boolean algebra, and in fact a measure algebra. We demonstrate the interactions of this work with recent results in computability theory and algorithmic randomness: First, we recall the definition of the Levin–V’yugin algebra and identify connections between its properties and classical properties from computability theory. In particular, we apply results on the interactions between notions of randomness and Turing reducibility to establish new facts about specific LV-degrees, such as the LV-degree of the collection of 1-generic sequences, that of the collection of sequences of hyperimmune degree, and those collections corresponding to various notions of effective randomness. Next, we provide a detailed explanation of a complex technique developed by V’yugin that allows the construction of semi-measures into which computability-theoretic properties can be encoded. We provide two examples of the use of this technique by explicating a result of V’yugin’s about the LV-degree of the collection of Martin-Löf random sequences and extending the result to the LV-degree of the collection of sequences of DNC degree.
Ackermann’s function can be expressed using an iterative algorithm, which essentially takes the form of a term rewriting system. Although the termination of this algorithm is far from obvious, its equivalence to the traditional recursive formulation—and therefore its totality—has a simple proof in Isabelle/HOL. This is a small example of formalising mathematics using a proof assistant, with a focus on the treatment of difficult recursions.
We study from the proof complexity perspective the (informal) proof search problem (cf. [17, Sections 1.5 and 21.5]):
•Is there an optimal way to search for propositional proofs?
We note that, as a consequence of Levin’s universal search, for any fixed proof system there exists a time-optimal proof search algorithm. Using classical proof complexity results about reflection principles we prove that a time-optimal proof search algorithm exists without restricting proof systems iff a p-optimal proof system exists.
To characterize precisely the time proof search algorithms need for individual formulas we introduce a new proof complexity measure based on algorithmic information concepts. In particular, to a proof system P we attach information-efficiency function$i_P(\tau )$ assigning to a tautology a natural number, and we show that:
•$i_P(\tau )$ characterizes time any P-proof search algorithm has to use on $\tau $,
• for a fixed P there is such an information-optimal algorithm (informally: it finds proofs of minimal information content),
• a proof system is information-efficiency optimal (its information-efficiency function is minimal up to a multiplicative constant) iff it is p-optimal,
• for non-automatizable systems P there are formulas $\tau $ with short proofs but having large information measure $i_P(\tau )$.
We isolate and motivate the problem to establish unconditional super-logarithmic lower bounds for $i_P(\tau )$ where no super-polynomial size lower bounds are known. We also point out connections of the new measure with some topics in proof complexity other than proof search.
A Cantor series expansion for a real number x with respect to a basic sequence $Q=(q_1,q_2,\dots )$, where $q_i \geq 2$, is a generalization of the base b expansion to an infinite sequence of bases. Ki and Linton in 1994 showed that for ordinary base b expansions the set of normal numbers is a $\boldsymbol {\Pi }^0_3$-complete set, establishing the exact complexity of this set. In the case of Cantor series there are three natural notions of normality: normality, ratio normality, and distribution normality. These notions are equivalent for base b expansions, but not for more general Cantor series expansions. We show that for any basic sequence the set of distribution normal numbers is $\boldsymbol {\Pi }^0_3$-complete, and if Q is $1$-divergent then the sets of normal and ratio normal numbers are $\boldsymbol {\Pi }^0_3$-complete. We further show that all five non-trivial differences of these sets are $D_2(\boldsymbol {\Pi }^0_3)$-complete if $\lim _i q_i=\infty $ and Q is $1$-divergent. This shows that except for the trivial containment that every normal number is ratio normal, these three notions are as independent as possible.
We prove that many seemingly simple theories have Borel complete reducts. Specifically, if a countable theory has uncountably many complete one-types, then it has a Borel complete reduct. Similarly, if $Th(M)$ is not small, then $M^{eq}$ has a Borel complete reduct, and if a theory T is not $\omega $-stable, then the elementary diagram of some countable model of T has a Borel complete reduct.
By the Galvin–Mycielski–Solovay theorem, a subset X of the line has Borel’s strong measure zero if and only if $M+X\neq \mathbb {R}$ for each meager set M.
A set $X\subseteq \mathbb {R}$ is meager-additive if $M+X$ is meager for each meager set M. Recently a theorem on meager-additive sets that perfectly parallels the Galvin–Mycielski–Solovay theorem was proven: A set $X\subseteq \mathbb {R}$ is meager-additive if and only if it has sharp measure zero, a notion akin to strong measure zero.
We investigate the validity of this result in Polish groups. We prove, e.g., that a set in a locally compact Polish group admitting an invariant metric is meager-additive if and only if it has sharp measure zero. We derive some consequences and calculate some cardinal invariants.