To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We introduce and prove the consistency of a new set theoretic axiom we call the Invariant Ideal Axiom. The axiom enables us to provide (consistently) a full topological classification of countable sequential groups, as well as fully characterize the behavior of their finite products.
We also construct examples that demonstrate the optimality of the conditions in IIA and list a number of open questions.
The current paper studies the formal properties of the Global Reflection Principle, to wit the assertion “All theorems of $\mathrm {Th}$ are true,” where $\mathrm {Th}$ is a theory in the language of arithmetic and the truth predicate satisfies the usual Tarskian inductive conditions for formulae in the language of arithmetic. We fix the gap in Kotlarski’s proof from [15], showing that the Global Reflection Principle for Peano Arithmetic is provable in the theory of compositional truth with bounded induction only ($\mathrm {CT}_0$). Furthermore, we extend the above result showing that $\Sigma _1$-uniform reflection over a theory of uniform Tarski biconditionals ($\mathrm {UTB}^-$) is provable in $\mathrm {CT}_0$, thus answering the question of Beklemishev and Pakhomov [2]. Finally, we introduce the notion of a prolongable satisfaction class and use it to study the structure of models of $\mathrm {CT}_0$. In particular, we provide a new model-theoretical characterization of theories of finite iterations of uniform reflection and present a new proof characterizing the arithmetical consequences of $\mathrm {CT}_0$.
We exhibit a bridge between the theory of cellular categories, used in algebraic topology and homological algebra, and the model-theoretic notion of stable independence. Roughly speaking, we show that the combinatorial cellular categories (those where, in a precise sense, the cellular morphisms are generated by a set) are exactly those that give rise to stable independence notions. We give two applications: on the one hand, we show that the abstract elementary classes of roots of Ext studied by Baldwin–Eklof–Trlifaj are stable and tame. On the other hand, we give a simpler proof (in a special case) that combinatorial categories are closed under 2-limits, a theorem of Makkai and Rosický.
Many tasks in statistical and causal inference can be construed as problems of entailment in a suitable formal language. We ask whether those problems are more difficult, from a computational perspective, for causal probabilistic languages than for pure probabilistic (or “associational”) languages. Despite several senses in which causal reasoning is indeed more complex—both expressively and inferentially—we show that causal entailment (or satisfiability) problems can be systematically and robustly reduced to purely probabilistic problems. Thus there is no jump in computational complexity. Along the way we answer several open problems concerning the complexity of well-known probability logics, in particular demonstrating the ${\exists \mathbb {R}}$-completeness of a polynomial probability calculus, as well as a seemingly much simpler system, the logic of comparative conditional probability.
We present a framework for tame geometry on Henselian valued fields, which we call Hensel minimality. In the spirit of o-minimality, which is key to real geometry and several diophantine applications, we develop geometric results and applications for Hensel minimal structures that were previously known only under stronger, less axiomatic assumptions. We show the existence of t-stratifications in Hensel minimal structures and Taylor approximation results that are key to non-Archimedean versions of Pila–Wilkie point counting, Yomdin’s parameterization results and motivic integration. In this first paper, we work in equi-characteristic zero; in the sequel paper, we develop the mixed characteristic case and a diophantine application.
We prove that it is consistent that Club Stationary Reflection and the Special Aronszajn Tree Property simultaneously hold on $\omega _2$, thereby contributing to the study of the tension between compactness and incompactness in set theory. The poset which produces the final model follows the collapse of an ineffable cardinal first with an iteration of club adding (with anticipation) and second with an iteration specializing Aronszajn trees.
In the first part of the paper, we prove a general theorem about specializing Aronszajn trees on $\omega _2$ after forcing with what we call $\mathcal {F}$-Strongly Proper posets, where $\mathcal {F}$ is either the weakly compact filter or the filter dual to the ineffability ideal. This type of poset, of which the Levy collapse is a degenerate example, uses systems of exact residue functions to create many strongly generic conditions. We prove a new result about stationary set preservation by quotients of this kind of poset; as a corollary, we show that the original Laver–Shelah model, which starts from a weakly compact cardinal, satisfies a strong stationary reflection principle, although it fails to satisfy the full Club Stationary Reflection. In the second part, we show that the composition of collapsing and club adding (with anticipation) is an $\mathcal {F}$-Strongly Proper poset. After proving a new result about Aronszajn tree preservation, we show how to obtain the final model.
We present and thoroughly study natural Polish spaces of separable Banach spaces. These spaces are defined as spaces of norms, respectively pseudonorms, on the countable infinite-dimensional rational vector space. We provide an exhaustive comparison of these spaces with admissible topologies recently introduced by Godefroy and Saint-Raymond and show that Borel complexities differ little with respect to these two topological approaches.
We investigate generic properties in these spaces and compare them with those in admissible topologies, confirming the suspicion of Godefroy and Saint-Raymond that they depend on the choice of the admissible topology.
Vardanyan’s Theorems [36, 37] state that $\mathsf {QPL}(\mathsf {PA})$—the quantified provability logic of Peano Arithmetic—is $\Pi ^0_2$ complete, and in particular that this already holds when the language is restricted to a single unary predicate. Moreover, Visser and de Jonge [38] generalized this result to conclude that it is impossible to computably axiomatize the quantified provability logic of a wide class of theories. However, the proof of this fact cannot be performed in a strictly positive signature. The system $\mathsf {QRC_1}$ was previously introduced by the authors [1] as a candidate first-order provability logic. Here we generalize the previously available Kripke soundness and completeness proofs, obtaining constant domain completeness. Then we show that $\mathsf {QRC_1}$ is indeed complete with respect to arithmetical semantics. This is achieved via a Solovay-type construction applied to constant domain Kripke models. As corollaries, we see that $\mathsf {QRC_1}$ is the strictly positive fragment of $\mathsf {QGL}$ and a fragment of $\mathsf {QPL}(\mathsf {PA})$.
We present a series of proof systems for exact entailment (i.e., relevant truthmaker preservation from premises to conclusion) and prove soundness and completeness. Using the proof systems, we observe that exact entailment is hyperintensional not only in the sense of Cresswell, but also in the sense recently proposed by Odintsov and Wansing.
Suppose that we have a method which estimates the conditional probabilities of some unknown stochastic source and we use it to guess which of the outcomes will happen. We want to make a correct guess as often as it is possible. What estimators are good for this? In this work, we consider estimators given by a familiar notion of universal coding for stationary ergodic measures, while working in the framework of algorithmic randomness, i.e., we are particularly interested in prediction of Martin-Löf random points. We outline the general theory and exhibit some counterexamples. Completing a result of Ryabko from 2009 we also show that universal probability measure in the sense of universal coding induces a universal predictor in the prequential sense. Surprisingly, this implication holds true provided the universal measure does not ascribe too low conditional probabilities to individual symbols. As an example, we show that the Prediction by Partial Matching (PPM) measure satisfies this requirement with a large reserve.
In this paper we build an Asperó–Mota iteration of length $\omega _2$ that adds a family of $\aleph _2$ many club subsets of $\omega _1$ which cannot be diagonalized while preserving $\aleph _2$. This result discloses a technical limitation of some types of Asperó–Mota iterations.
We show that after forcing with a countable support iteration or a finite product of Sacks or splitting forcing over L, every analytic hypergraph on a Polish space admits a $\mathbf {\Delta }^1_2$ maximal independent set. This extends an earlier result by Schrittesser (see [25]). As a main application we get the consistency of $\mathfrak {r} = \mathfrak {u} = \mathfrak {i} = \omega _2$ together with the existence of a $\Delta ^1_2$ ultrafilter, a $\Pi ^1_1$ maximal independent family, and a $\Delta ^1_2$ Hamel basis. This solves open problems of Brendle, Fischer, and Khomskii [5] and the author [23]. We also show in ZFC that $\mathfrak {d} \leq \mathfrak {i}_{cl}$, addressing another question from [5].
Given a Henselian valuation, we study its definability (with and without parameters) by examining conditions on the value group. We show that any Henselian valuation whose value group is not closed in its divisible hull is definable in the language of rings, using one parameter. Thereby we strengthen known definability results. Moreover, we show that in this case, one parameter is optimal in the sense that one cannot obtain definability without parameters. To this end, we present a construction method for a t-Henselian non-Henselian ordered field elementarily equivalent to a Henselian field with a specified value group.
We introduce several highness notions on degrees related to the problem of computing isomorphisms between structures, provided that isomorphisms exist. We consider variants along axes of uniformity, inclusion of negative information, and several other problems related to computing isomorphisms. These other problems include Scott analysis (in the form of back-and-forth relations), jump hierarchies, and computing descending sequences in linear orders.
Hyperlogic is a hyperintensional system designed to regiment metalogical claims (e.g., “Intuitionistic logic is correct” or “The law of excluded middle holds”) into the object language, including within embedded environments such as attitude reports and counterfactuals. This paper is the first of a two-part series exploring the logic of hyperlogic. This part presents a minimal logic of hyperlogic and proves its completeness. It consists of two interdefined axiomatic systems: one for classical consequence (truth preservation under a classical interpretation of the connectives) and one for “universal” consequence (truth preservation under any interpretation). The sequel to this paper explores stronger logics that are sound and complete over various restricted classes of models as well as languages with hyperintensional operators.
The complete characterisation of order types of non-standard models of Peano arithmetic and its extensions is a famous open problem. In this paper, we consider subtheories of Peano arithmetic (both with and without induction), in particular, theories formulated in proper fragments of the full language of arithmetic. We study the order types of their non-standard models and separate all considered theories via their possible order types. We compare the theories with and without induction and observe that the theories without induction tend to have an algebraic character that allows model constructions by closing a model under the relevant algebraic operations.
In providing a good foundation for mathematics, set theorists often aim to develop the strongest theories possible and avoid those theories that place undue restrictions on the capacity to possess strength. For example, adding a measurable cardinal to $ZFC$ is thought to give a stronger theory than adding $V=L$ and the latter is thought to be more restrictive than the former. The two main proponents of this style of account are Penelope Maddy and John Steel. In this paper, I’ll offer a third account that is intended to provide a simple analysis of restrictiveness based on the algebraic concept of retraction in the category of theories. I will also deliver some results and arguments that suggest some plausible alternative approaches to analyzing restrictiveness do not live up to their intuitive motivation.
We study higher analogues of the classical independence number on $\omega $. For $\kappa $ regular uncountable, we denote by $i(\kappa )$ the minimal size of a maximal $\kappa $-independent family. We establish ZFC relations between $i(\kappa )$ and the standard higher analogues of some of the classical cardinal characteristics, e.g., $\mathfrak {r}(\kappa )\leq \mathfrak {i}(\kappa )$ and $\mathfrak {d}(\kappa )\leq \mathfrak {i}(\kappa )$. For $\kappa $ measurable, assuming that $2^{\kappa }=\kappa ^{+}$ we construct a maximal $\kappa $-independent family which remains maximal after the $\kappa $-support product of $\lambda $ many copies of $\kappa $-Sacks forcing. Thus, we show the consistency of $\kappa ^{+}=\mathfrak {d}(\kappa )=\mathfrak {i}(\kappa )<2^{\kappa }$. We conclude the paper with interesting open questions and discuss difficulties regarding other natural approaches to higher independence.
In this work we study the decidability of a class of global modal logics arising from Kripke frames evaluated over certain residuated lattices, known in the literature as modal many-valued logics. We exhibit a large family of these modal logics which are undecidable, in contrast with classical modal logic and propositional logics defined over the same classes of algebras. This family includes the global modal logics arising from Kripke frames evaluated over the standard Łukasiewicz and Product algebras. We later refine the previous result, and prove that global modal Łukasiewicz and Product logics are not even recursively axiomatizable. We conclude by closing negatively the open question of whether each global modal logic coincides with its local modal logic closed under the unrestricted necessitation rule.
Neo-Fregean logicists claim that Hume’s Principle (HP) may be taken as an implicit definition of cardinal number, true simply by fiat. A long-standing problem for neo-Fregean logicism is that HP is not deductively conservative over pure axiomatic second-order logic. This seems to preclude HP from being true by fiat. In this paper, we study Richard Kimberly Heck’s Two-Sorted Frege Arithmetic (2FA), a variation on HP which has been thought to be deductively conservative over second-order logic. We show that it isn’t. In fact, 2FA is not conservative over n-th order logic, for all $n \geq 2$. It follows that in the usual one-sorted setting, HP is not deductively Field-conservative over second- or higher-order logic.