To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Every topological group G has, up to isomorphism, a unique minimal G-flow that maps onto every minimal G-flow, the universal minimal flow $M(G).$ We show that if G has a compact normal subgroup K that acts freely on $M(G)$ and there exists a uniformly continuous cross-section from $G/K$ to $G,$ then the phase space of $M(G)$ is homeomorphic to the product of the phase space of $M(G/K)$ with K. Moreover, if either the left and right uniformities on G coincide or G is isomorphic to a semidirect product $G/K\ltimes K$, we also recover the action, in the latter case extending a result of Kechris and Sokić. As an application, we show that the phase space of $M(G)$ for any totally disconnected locally compact Polish group G with a normal open compact subgroup is homeomorphic to a finite set, the Cantor set $2^{\mathbb {N}}$, $M(\mathbb {Z})$, or $M(\mathbb {Z})\times 2^{\mathbb {N}}.$
Theorems of hyperarithmetic analysis (THAs) occupy an unusual neighborhood in the realms of reverse mathematics and recursion theoretic complexity. They lie above all the fixed (recursive) iterations of the Turing Jump but below ATR$_{0}$ (and so $\Pi _{1}^{1}$-CA$_{0}$ or the hyperjump). There is a long history of proof theoretic principles which are THAs. Until Barnes, Goh, and Shore [ta] revealed an array of theorems in graph theory living in this neighborhood, there was only one mathematical denizen. In this paper we introduce a new neighborhood of theorems which are almost theorems of hyperarithmetic analysis (ATHAs). When combined with ACA$_{0}$ they are THAs but on their own they are very weak. We generalize several conservativity classes ($\Pi _{1}^{1}$, r-$\Pi _{2}^{1}$, and Tanaka) and show that all our examples (and many others) are conservative over RCA$_{0}$ in all these senses and weak in other recursion theoretic ways as well. We provide denizens, both mathematical and logical. These results answer a question raised by Hirschfeldt and reported in Montalbán [2011] by providing a long list of pairs of principles one of which is very weak over RCA$_{0}$ but over ACA$_{0}$ is equivalent to the other which may be strong (THA) or very strong going up a standard hierarchy and at the end being stronger than full second order arithmetic.
We write $\mathcal {S}_n(A)$ for the set of permutations of a set A with n non-fixed points and $\mathrm {{seq}}^{1-1}_n(A)$ for the set of one-to-one sequences of elements of A with length n where n is a natural number greater than $1$. With the Axiom of Choice, $|\mathcal {S}_n(A)|$ and $|\mathrm {{seq}}^{1-1}_n(A)|$ are equal for all infinite sets A. Among our results, we show, in ZF, that $|\mathcal {S}_n(A)|\leq |\mathrm {{seq}}^{1-1}_n(A)|$ for any infinite set A if ${\mathrm {AC}}_{\leq n}$ is assumed and this assumption cannot be removed. In the other direction, we show that $|\mathrm {{seq}}^{1-1}_n(A)|\leq |\mathcal {S}_{n+1}(A)|$ for any infinite set A and the subscript $n+1$ cannot be reduced to n. Moreover, we also show that “$|\mathcal {S}_n(A)|\leq |\mathcal {S}_{n+1}(A)|$ for any infinite set A” is not provable in ZF.
We show that numerous distinctive concepts of constructive mathematics arise automatically from an “antithesis” translation of affine logic into intuitionistic logic via a Chu/Dialectica construction. This includes apartness relations, complemented subsets, anti-subgroups and anti-ideals, strict and non-strict order pairs, cut-valued metrics, and apartness spaces. We also explain the constructive bifurcation of some classical concepts using the choice between multiplicative and additive affine connectives. Affine logic and the antithesis construction thus systematically “constructivize” classical definitions, handling the resulting bookkeeping automatically.
In [17], we introduced an extensional variant of generic realizability [22], where realizers act extensionally on realizers, and showed that this form of realizability provides inner models of $\mathsf {CZF}$ (constructive Zermelo–Fraenkel set theory) and $\mathsf {IZF}$ (intuitionistic Zermelo–Fraenkel set theory), that further validate $\mathsf {AC}_{\mathsf {FT}}$ (the axiom of choice in all finite types). In this paper, we show that extensional generic realizability validates several choice principles for dependent types, all exceeding $\mathsf {AC}_{\mathsf {FT}}$. We then show that adding such choice principles does not change the arithmetic part of either $\mathsf {CZF}$ or $\mathsf {IZF}$.
Certain instances of contraction are provable in Zardini’s system $\mathbf {IK}^\omega $ which causes triviality once a truth predicate and suitable fixed points are available.
Recall that B is PA relative to A if B computes a member of every nonempty $\Pi ^0_1(A)$ class. This two-place relation is invariant under Turing equivalence and so can be thought of as a binary relation on Turing degrees. Miller and Soskova [23] introduced the notion of a $\Pi ^0_1$ class relative to an enumeration oracle A, which they called a $\Pi ^0_1{\left \langle {A}\right \rangle }$ class. We study the induced extension of the relation B is PA relative to A to enumeration oracles and hence enumeration degrees. We isolate several classes of enumeration degrees based on their behavior with respect to this relation: the PA bounded degrees, the degrees that have a universal class, the low for PA degrees, and the ${\left \langle {\text {self}\kern1pt}\right \rangle }$-PA degrees. We study the relationship between these classes and other known classes of enumeration degrees. We also investigate a group of classes of enumeration degrees that were introduced by Kalimullin and Puzarenko [14] based on properties that are commonly studied in descriptive set theory. As part of this investigation, we give characterizations of three of their classes in terms of a special sub-collection of relativized $\Pi ^0_1$ classes—the separating classes. These three can then be seen to be direct analogues of three of our classes. We completely determine the relative position of all classes in question.
We present a new frame semantics for positive relevant and substructural propositional logics. This frame semantics is both a generalisation of Routley–Meyer ternary frames and a simplification of them. The key innovation of this semantics is the use of a single accessibility relation to relate collections of points to points. Different logics are modeled by varying the kinds of collections used: they can be sets, multisets, lists or trees. We show that collection frames on trees are sound and complete for the basic positive distributive substructural logic $\mathsf {B}^+$, that collection frames on multisets are sound and complete for $\mathsf {RW}^+$ (the relevant logic $\mathsf {R}^+$, without contraction, or equivalently, positive multiplicative and additive linear logic with distribution for the additive connectives), and that collection frames on sets are sound for the positive relevant logic $\mathsf {R}^+$. The completeness of set frames for $\mathsf {R}^+$ is, currently, an open question.
We explore the possibilities for elementary embeddings $j : M \to N$, where M and N are models of ZFC with the same ordinals, $M \subseteq N$, and N has access to large pieces of j. We construct commuting systems of such maps between countable transitive models that are isomorphic to various canonical linear and partial orders, including the real line ${\mathbb R}$.
We extend the languages of both basic and graded modal logic with the infinity diamond, a modality that expresses the existence of infinitely many successors having a certain property. In both cases we define a natural notion of bisimilarity for the resulting formalisms, that we dub $\mathtt {ML}^{\infty }$ and $\mathtt {GML}^{\infty }$, respectively. We then characterise these logics as the bisimulation-invariant fragments of the naturally corresponding predicate logic, viz., the extension of first-order logic with the infinity quantifier. Furthermore, for both $\mathtt {ML}^{\infty }$ and $\mathtt {GML}^{\infty }$ we provide a sound and complete axiomatisation for the set of formulas that are valid in every Kripke frame, we prove a small model property with respect to a widened class of weighted models, and we establish decidability of the satisfiability problem.
We prove that the first-order logic of CZF is intuitionistic first-order logic. To do so, we introduce a new model of transfinite computation (Set Register Machines) and combine the resulting notion of realisability with Beth semantics. On the way, we also show that the propositional admissible rules of CZF are exactly those of intuitionistic propositional logic.
We investigate an approach for drawing logical inference from inconsistent premisses. The main idea in this approach is that the inconsistencies in the premisses should be interpreted as uncertainty of the information. We propose a mechanism, based on Kinght’s [14] study of inconsistency, for revising an inconsistent set of premisses to a minimally uncertain, probabilistically consistent one. We will then generalise the probabilistic entailment relation introduced in [15] for propositional languages to the first order case to draw logical inference from a probabilistic set of premisses. We will show how this combination can allow us to limit the effect of uncertainty introduced by inconsistent premisses to only the reasoning on the part of the premise set that is relevant to the inconsistency.
We continue our study of strongly unbounded colorings, this time focusing on subadditive maps. In Part I of this series, we showed that, for many pairs of infinite cardinals $\theta < \kappa $, the existence of a strongly unbounded coloring $c:[\kappa ]^2 \rightarrow \theta $ is a theorem of $\textsf{ZFC}$. Adding the requirement of subadditivity to a strongly unbounded coloring is a significant strengthening, though, and here we see that in many cases the existence of a subadditive strongly unbounded coloring $c:[\kappa ]^2 \rightarrow \theta $ is independent of $\textsf{ZFC}$. We connect the existence of subadditive strongly unbounded colorings with a number of other infinitary combinatorial principles, including the narrow system property, the existence of $\kappa $-Aronszajn trees with ascent paths, and square principles. In particular, we show that the existence of a closed, subadditive, strongly unbounded coloring $c:[\kappa ]^2 \rightarrow \theta $ is equivalent to a certain weak indexed square principle $\boxminus ^{\operatorname {\mathrm {ind}}}(\kappa , \theta )$. We conclude the paper with an application to the failure of the infinite productivity of $\kappa $-stationarily layered posets, answering a question of Cox.
We investigate Maker–Breaker games on graphs of size $\aleph _1$ in which Maker’s goal is to build a copy of the host graph. We establish a firm dependence of the outcome of the game on the axiomatic framework. Relating to this, we prove that there is a winning strategy for Maker in the $K_{\omega ,\omega _1}$-game under ZFC+MA+$\neg $CH and a winning strategy for Breaker under ZFC+CH. We prove a similar result for the $K_{\omega _1}$-game. Here, Maker has a winning strategy under ZF+DC+AD, while Breaker has one under ZFC+CH again.
We show that the theory of Galois actions of a torsion Abelian group A is companionable if and only if, for each prime p, the p-primary part of A is either finite or it coincides with the Prüfer p-group. We also provide a model-theoretic description of the model companions we obtain.
An algebraically expandable (AE) class is a class of algebraic structures axiomatizable by sentences of the form $\forall \exists ! \mathop{\boldsymbol {\bigwedge }}\limits p = q$. For a logic L algebraized by a quasivariety $\mathcal {Q}$ we show that the AE-subclasses of $\mathcal {Q}$ correspond to certain natural expansions of L, which we call algebraic expansions. These turn out to be a special case of the expansions by implicit connectives studied by X. Caicedo. We proceed to characterize all the AE-subclasses of abelian $\ell $-groups and perfect MV-algebras, thus fully describing the algebraic expansions of their associated logics.
We study the complexity of isomorphism of classes of metric structures using methods from infinitary continuous logic. For Borel classes of locally compact structures, we prove that if the equivalence relation of isomorphism is potentially $\mathbf {\Sigma }^0_2$, then it is essentially countable. We also provide an equivalent model-theoretic condition that is easy to check in practice. This theorem is a common generalization of a result of Hjorth about pseudo-connected metric spaces and a result of Hjorth–Kechris about discrete structures. As a different application, we also give a new proof of Kechris’s theorem that orbit equivalence relations of actions of Polish locally compact groups are essentially countable.
Furstenberg–Zimmer structure theory refers to the extension of the dichotomy between the compact and weakly mixing parts of a measure-preserving dynamical system and the algebraic and geometric descriptions of such parts to a conditional setting, where such dichotomy is established relative to a factor and conditional analogs of those algebraic and geometric descriptions are sought. Although the unconditional dichotomy and the characterizations are known for arbitrary systems, the relative situation is understood under certain countability and separability hypotheses on the underlying groups and spaces. The aim of this article is to remove these restrictions in the relative situation and establish a Furstenberg–Zimmer structure theory in full generality. As an independent byproduct, we establish a connection between the relative analysis of systems in ergodic theory and the internal logic in certain Boolean topoi.
Every discrete definable subset of a closed asymptotic couple with ordered scalar field ${\boldsymbol {k}}$ is shown to be contained in a finite-dimensional ${\boldsymbol {k}}$-linear subspace of that couple. It follows that the differential-valued field $\mathbb {T}$ of transseries induces more structure on its value group than what is definable in its asymptotic couple equipped with its scalar multiplication by real numbers, where this asymptotic couple is construed as a two-sorted structure with $\mathbb {R}$ as the underlying set for the second sort.
We give a new approach to the failure of the Canonical Base Property (CBP) in the so far only known counterexample, produced by Hrushovski, Palacín and Pillay. For this purpose, we will give an alternative presentation of the counterexample as an additive cover of an algebraically closed field. We isolate two fundamental weakenings of the CBP, which already appeared in work of Chatzidakis and Moosa-Pillay and show that they do not hold in the counterexample. In order to do so, a study of imaginaries in additive covers is developed. As a by-product of the presentation, we observe that a pure binding-group-theoretic account of the CBP is unlikely.