To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Kristiansen and Murwanashyaka recently proved that Robinson arithmetic, Q, is interpretable in an elementary theory of full binary trees, T. We prove that, conversely, T is interpretable in Q by producing a formal interpretation of T in an elementary concatenation theory QT+, thereby also establishing mutual interpretability of T with several well-known weak essentially undecidable theories of numbers, strings, and sets. We also introduce a “hybrid” elementary theory of strings and trees, WQT*, and establish its mutual interpretability with Robinson’s weak arithmetic R, the weak theory of trees WT of Kristiansen and Murwanashyaka, and the weak concatenation theory WTCε of Higuchi and Horihata.
We obtain an array of consistency results concerning trees and stationary reflection at double successors of regular cardinals $\kappa $, updating some classical constructions in the process. This includes models of $\mathsf {CSR}(\kappa ^{++})\wedge {\sf TP}(\kappa ^{++})$ (both with and without ${\sf AP}(\kappa ^{++})$) and models of the conjunctions ${\sf SR}(\kappa ^{++}) \wedge \mathsf {wTP}(\kappa ^{++}) \wedge {\sf AP}(\kappa ^{++})$ and $\neg {\sf AP}(\kappa ^{++}) \wedge {\sf SR}(\kappa ^{++})$ (the latter was originally obtained in joint work by Krueger and the first author [9], and is here given using different methods). Analogs of these results with the failure of $\sf {SH}(\kappa ^{++})$ are given as well. Finally, we obtain all of our results with an arbitrarily large $2^\kappa $, applying recent joint work by Honzik and the third author.
In “Some Remarks on Extending and Interpreting Theories with a Partial Truth Predicate”, Reinhardt [21] famously proposed an instrumentalist interpretation of the truth theory Kripke–Feferman ($\mathrm {KF}$) in analogy to Hilbert’s program. Reinhardt suggested to view $\mathrm {KF}$ as a tool for generating “the significant part of $\mathrm {KF}$”, that is, as a tool for deriving sentences of the form $\mathrm{Tr}\ulcorner {\varphi }\urcorner $. The constitutive question of Reinhardt’s program was whether it was possible “to justify the use of nonsignificant sentences entirely within the framework of significant sentences”. This question was answered negatively by Halbach & Horsten [10] but we argue that under a more careful interpretation the question may receive a positive answer. To this end, we propose to shift attention from $\mathrm {KF}$-provably true sentences to $\mathrm {KF}$-provably true inferences, that is, we shall identify the significant part of $\mathrm {KF}$ with the set of pairs $\langle {\Gamma , \Delta }\rangle $, such that $\mathrm {KF}$ proves that if all members of $\Gamma $ are true, at least one member of $\Delta $ is true. In way of addressing Reinhardt’s question we show that the provably true inferences of suitable $\mathrm {KF}$-like theories coincide with the provable sequents of matching versions of the theory Partial Kripke–Feferman ($\mathrm {PKF}$).
Neo-Fregeanism aims to provide a possible route to knowledge of arithmetic via Hume’s principle, but this is of only limited significance if it cannot account for how the vast majority of arithmetic knowledge, accrued by ordinary people, is obtained. I argue that Hume’s principle does not capture what is ordinarily meant by numerical identity, but that we can do much better by buttressing plural logic with plural versions of the ancestral operator, obtaining natural and plausible characterizations of various key arithmetic concepts, including finiteness, equinumerosity and addition and multiplication of cardinality—revealing these to be logical concepts, and obtaining much of ordinary arithmetic knowledge as logical knowledge. Supplementing this with an abstraction principle and a simple axiom of infinity (known either empirically or modally) we obtain a full interpretation of arithmetic.
We study the notion of non-trivial elementary embeddings under the assumption that V satisfies ZFC without Power Set but with the Collection Scheme. We show that no such embedding can exist under the additional assumption that it is cofinal and either is a set or that the scheme of Dependent Choices of arbitrary length holds. We then study failures of instances of Collection in symmetric submodels of class forcings.
We provide a model theoretical and tree property-like characterization of $\lambda $-$\Pi ^1_1$-subcompactness and supercompactness. We explore the behavior of these combinatorial principles at accessible cardinals.
We introduce and study model-theoretic connected components of rings as an analogue of model-theoretic connected components of definable groups. We develop their basic theory and use them to describe both the definable and classical Bohr compactifications of rings. We then use model-theoretic connected components to explicitly calculate Bohr compactifications of some classical matrix groups, such as the discrete Heisenberg group ${\mathrm {UT}}_3({\mathbb {Z}})$, the continuous Heisenberg group ${\mathrm {UT}}_3({\mathbb {R}})$, and, more generally, groups of upper unitriangular and invertible upper triangular matrices over unital rings.
The language of linear temporal logic can be interpreted on the class of dynamic topological systems, giving rise to the intuitionistic temporal logic ${\sf ITL}^{\sf c}_{\Diamond \forall }$, recently shown to be decidable by Fernández-Duque. In this article we axiomatize this logic, some fragments, and prove completeness for several familiar spaces.
In this paper, using a propositional modal language extended with the window modality, we capture the first-order properties of various mereological theories. In this setting, $\Box \varphi $ reads all the parts (of the current object) are$\varphi $, interpreted on the models with a whole-part binary relation under various constraints. We show that all the usual mereological theories can be captured by modal formulas in our language via frame correspondence. We also correct a mistake in the existing completeness proof for a basic system of mereology by providing a new construction of the canonical model.
We introduce a sequent system which is Gentzen algebraisable with orthomodular lattices as equivalent algebraic semantics, and therefore can be viewed as a calculus for orthomodular quantum logic. Its sequents are pairs of non-associative structures, formed via a structural connective whose algebraic interpretation is the Sasaki product on the left-hand side and its De Morgan dual on the right-hand side. It is a substructural calculus, because some of the standard structural sequent rules are restricted—by lifting all such restrictions, one recovers a calculus for classical logic.
We show that, assuming the Axiom of Determinacy, every non-selfdual Wadge class can be constructed by starting with those of level $\omega _1$ (that is, the ones that are closed under Borel preimages) and iteratively applying the operations of expansion and separated differences. The proof is essentially due to Louveau, and it yields at the same time a new proof of a theorem of Van Wesep (namely, that every non-selfdual Wadge class can be expressed as the result of a Hausdorff operation applied to the open sets). The exposition is self-contained, except for facts from classical descriptive set theory.
In this paper, we give an axiomatization of the ordinal number system, in the style of Dedekind’s axiomatization of the natural number system. The latter is based on a structure $(N,0,s)$ consisting of a set N, a distinguished element $0\in N$ and a function $s\colon N\to N$. The structure in our axiomatization is a triple $(O,L,s)$, where O is a class, L is a class function defined on all s-closed ‘subsets’ of O, and s is a class function $s\colon O\to O$. In fact, we develop the theory relative to a Grothendieck-style universe (minus the power set axiom), as a way of bringing the natural and the ordinal cases under one framework. We also establish a universal property for the ordinal number system, analogous to the well-known universal property for the natural number system.
The notion of a complete type can be generalized in a natural manner to allow assigning a value in an arbitrary Boolean algebra $\mathcal {B}$ to each formula. We show some basic results regarding the effect of the properties of $\mathcal {B}$ on the behavior of such types, and show they are particularity well behaved in the case of NIP theories. In particular, we generalize the third author’s result about counting types, as well as the notion of a smooth type and extending a type to a smooth one. We then show that Keisler measures are tied to certain Boolean types and show that some of the results can thus be transferred to measures—in particular, giving an alternative proof of the fact that every measure in a dependent theory can be extended to a smooth one. We also study the stable case. We consider this paper as an invitation for more research into the topic of Boolean types.
Let $\kappa $ be a regular uncountable cardinal, and a cardinal greater than or equal to $\kappa $. Revisiting a celebrated result of Shelah, we show that if is close to $\kappa $ and (= the least size of a cofinal subset of ) is greater than , then can be represented (in the sense of pcf theory) as a pseudopower. This can be used to obtain optimal results concerning the splitting problem. For example we show that if and , then no $\kappa $-complete ideal on is weakly -saturated.
Any intermediate propositional logic (i.e., a logic including intuitionistic logic and contained in classical logic) can be extended to a calculus with epsilon- and tau-operators and critical formulas. For classical logic, this results in Hilbert’s $\varepsilon $-calculus. The first and second $\varepsilon $-theorems for classical logic establish conservativity of the $\varepsilon $-calculus over its classical base logic. It is well known that the second $\varepsilon $-theorem fails for the intuitionistic $\varepsilon $-calculus, as prenexation is impossible. The paper investigates the effect of adding critical $\varepsilon $- and $\tau $-formulas and using the translation of quantifiers into $\varepsilon $- and $\tau $-terms to intermediate logics. It is shown that conservativity over the propositional base logic also holds for such intermediate ${\varepsilon \tau }$-calculi. The “extended” first $\varepsilon $-theorem holds if the base logic is finite-valued Gödel–Dummett logic, and fails otherwise, but holds for certain provable formulas in infinite-valued Gödel logic. The second $\varepsilon $-theorem also holds for finite-valued first-order Gödel logics. The methods used to prove the extended first $\varepsilon $-theorem for infinite-valued Gödel logic suggest applications to theories of arithmetic.
We show that if a countable structure M in a finite relational language is not cellular, then there is an age-preserving $N \supseteq M$ such that $2^{\aleph _0}$ many structures are bi-embeddable with N. The proof proceeds by a case division based on mutual algebraicity.
Descriptive set theory and computability theory are closely-related fields of logic; both are oriented around a notion of descriptive complexity. However, the two fields typically consider objects of very different sizes; computability theory is principally concerned with subsets of the naturals, while descriptive set theory is interested primarily in subsets of the reals. In this paper, we apply a generalization of computability theory, admissible recursion theory, to consider the relative complexity of notions that are of interest in descriptive set theory. In particular, we examine the perfect set property, determinacy, the Baire property, and Lebesgue measurability. We demonstrate that there is a separation of descriptive complexity between the perfect set property and determinacy for analytic sets of reals; we also show that the Baire property and Lebesgue measurability are both equivalent in complexity to the property of simply being a Borel set, for $\boldsymbol {\Sigma ^{1}_{2}}$ sets of reals.
Necessary and sufficient conditions are presented for the (first-order) theory of a universal class of algebraic structures (algebras) to have a model completion, extending a characterization provided by Wheeler. For varieties of algebras that have equationally definable principal congruences and the compact intersection property, these conditions yield a more elegant characterization obtained (in a slightly more restricted setting) by Ghilardi and Zawadowski. Moreover, it is shown that under certain further assumptions on congruence lattices, the existence of a model completion implies that the variety has equationally definable principal congruences. This result is then used to provide necessary and sufficient conditions for the existence of a model completion for theories of Hamiltonian varieties of pointed residuated lattices, a broad family of varieties that includes lattice-ordered abelian groups and MV-algebras. Notably, if the theory of a Hamiltonian variety of pointed residuated lattices has a model completion, it must have equationally definable principal congruences. In particular, the theories of lattice-ordered abelian groups and MV-algebras do not have a model completion, as first proved by Glass and Pierce, and Lacava, respectively. Finally, it is shown that certain varieties of pointed residuated lattices generated by their linearly ordered members, including lattice-ordered abelian groups and MV-algebras, can be extended with a binary operation to obtain theories that do have a model completion.
Is it possible to maintain classical logic, stay close to classical semantics, and yet accept that language might be semantically indeterminate? The article gives an affirmative answer by Ramsifying classical semantics, which yields a new semantic theory that remains much closer to classical semantics than supervaluationism but which at the same time avoids the problematic classical presupposition of semantic determinacy. The resulting Ramsey semantics is developed in detail, it is shown to supply a classical concept of truth and to fully support the rules and metarules of classical logic, and it is applied to vague terms as well as to theoretical or open-ended terms from mathematics and science. The theory also demonstrates how diachronic or synchronic interpretational continuity across languages is compatible with semantic indeterminacy.
Matthias Schröder has asked the question whether there is a weakest discontinuous problem in the topological version of the Weihrauch lattice. Such a problem can be considered as the weakest unsolvable problem. We introduce the discontinuity problem, and we show that it is reducible exactly to the effectively discontinuous problems, defined in a suitable way. However, in which sense this answers Schröder’s question sensitively depends on the axiomatic framework that is chosen, and it is a positive answer if we work in Zermelo–Fraenkel set theory with dependent choice and the axiom of determinacy $\mathsf {AD}$. On the other hand, using the full axiom of choice, one can construct problems which are discontinuous, but not effectively so. Hence, the exact situation at the bottom of the Weihrauch lattice sensitively depends on the axiomatic setting that we choose. We prove our result using a variant of Wadge games for mathematical problems. While the existence of a winning strategy for Player II characterizes continuity of the problem (as already shown by Nobrega and Pauly), the existence of a winning strategy for Player I characterizes effective discontinuity of the problem. By Weihrauch determinacy we understand the condition that every problem is either continuous or effectively discontinuous. This notion of determinacy is a fairly strong notion, as it is not only implied by the axiom of determinacy $\mathsf {AD}$, but it also implies Wadge determinacy. We close with a brief discussion of generalized notions of productivity.