We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We determine the density of integral binary forms of given degree that have squarefree discriminant, proving for the first time that the lower density is positive. Furthermore, we determine the density of integral binary forms that cut out maximal orders in number fields. The latter proves, in particular, an ‘arithmetic Bertini theorem’ conjectured by Poonen for ${\mathbb {P}}^1_{\mathbb {Z}}$.
Our methods also allow us to prove that there are $\gg X^{1/2+1/(n-1)}$ number fields of degree n having associated Galois group $S_n$ and absolute discriminant less than X, improving the best previously known lower bound of $\gg X^{1/2+1/n}$.
Finally, our methods correct an error in and thus resurrect earlier (retracted) results of Nakagawa on lower bounds for the number of totally unramified $A_n$-extensions of quadratic number fields of bounded discriminant.
Let f(x) and g(x) be polynomials in $\mathbb F_{2}[x]$ with ${\rm deg}\text{ } f=n$. It is shown that for $n\gg 1$, there is an $g_{1}(x)\in \mathbb F_{2}[x]$ with ${\rm deg}\text{ } g_{1}\leqslant \max\{{\rm deg}\text{ } g, 6.7\log n\}$ and $g(x)-g_{1}(x)$ having $ \lt 6.7\log n$ terms such that $\gcd(f(x), g_{1}(x))=1$. As an application, it is established using a result of Dubickas and Sha that given $f(x)\in \mathbb F_{2}[x]$ of degree $n\geqslant 1$, there is a separable $g(x)\in 2[x]$ with ${\rm deg}\text{ } g= {\rm deg}\text{ } f$ and satisfying that $f(x)-g(x)$ has $\leqslant 6.7\log n$ terms. As a simple consequence, the latter result holds in $\mathbb Z[x]$ after replacing ‘number of terms’ by the L1-norm of a polynomial and $6.7\log n$ by $6.8\log n$. This improves the bound $(\log n)^{\log 4 +\operatorname{\varepsilon}}$ obtained by Filaseta and Moy.
We prove a nonabelian variant of the classical Mordell–Lang conjecture in the context of finite- dimensional central simple algebras. We obtain the following result as a particular case of a more general statement. Let K be an algebraically closed field of characteristic zero, let $B_1,\dots ,B_r\in \mathrm {GL}_m(K)$ be matrices with multiplicatively independent eigenvalues and let V be a closed subvariety of $\mathrm {GL}_m(K)$ not passing through zero. Then there exist only finitely many elements of $\mathrm {GL}_m(K)$ of the form $B_1^{n_1}\cdots B_r^{n_r}$ (as we vary $n_1,\dots ,n_r$ in $\mathbb {Z}$) lying on the subvariety V.
We present a new explicit formula for the determinant that contains superexponentially fewer terms than the usual Leibniz formula. As an immediate corollary of our formula, we show that the tensor rank of the $n \times n$ determinant tensor is no larger than the $n$-th Bell number, which is much smaller than the previously best-known upper bounds when $n \geq 4$. Over fields of non-zero characteristic we obtain even tighter upper bounds, and we also slightly improve the known lower bounds. In particular, we show that the $4 \times 4$ determinant over ${\mathbb{F}}_2$ has tensor rank exactly equal to $12$. Our results also improve upon the best-known upper bound for the Waring rank of the determinant when $n \geq 17$, and lead to a new family of axis-aligned polytopes that tile ${\mathbb{R}}^n$.
We determine the characteristic polynomials of the matrices $[q^{\,j-k}+t]_{1\le \,j,k\le n}$ and $[q^{\,j+k}+t]_{1\le \,j,k\le n}$ for any complex number $q\not =0,1$. As an application, for complex numbers $a,b,c$ with $b\not =0$ and $a^2\not =4b$, and the sequence $(w_m)_{m\in \mathbb Z}$ with $w_{m+1}=aw_m-bw_{m-1}$ for all $m\in \mathbb Z$, we determine the exact value of $\det [w_{\,j-k}+c\delta _{jk}]_{1\le \,j,k\le n}$.
Lehmer [‘On certain character matrices’, Pacific J. Math.6 (1956), 491–499, and ‘Power character matrices’, Pacific J. Math.10 (1960), 895–907] defines four classes of matrices constructed from roots of unity for which the characteristic polynomials and the kth powers can be determined explicitly. We study a class of matrices which arise naturally in transformation formulae of finite field hypergeometric functions and whose entries are roots of unity and zeroes. We determine the characteristic polynomial, eigenvalues, eigenvectors and kth powers of these matrices. The eigenvalues are natural families of products of Jacobi sums.
Motivated by the work initiated by Chapman [‘Determinants of Legendre symbol matrices’, Acta Arith.115 (2004), 231–244], we investigate some arithmetical properties of generalised Legendre matrices over finite fields. For example, letting $a_1,\ldots ,a_{(q-1)/2}$ be all the nonzero squares in the finite field $\mathbb {F}_q$ containing q elements with $2\nmid q$, we give the explicit value of the determinant $D_{(q-1)/2}=\det [(a_i+a_j)^{(q-3)/2}]_{1\le i,j\le (q-1)/2}$. In particular, if $q=p$ is a prime greater than $3$, then
For a principal ideal domain $A$, the Latimer–MacDuffee correspondence sets up a bijection between the similarity classes of matrices in $\textrm{M}_{n}(A)$ with irreducible characteristic polynomial $f(x)$ and the ideal classes of the order $A[x]/(f(x))$. We prove that when $A[x]/(f(x))$ is maximal (i.e. integrally closed, i.e. a Dedekind domain), then every similarity class contains a representative that is, in a sense, close to being a companion matrix. The first step in the proof is to show that any similarity class corresponding to an ideal (not necessarily prime) of degree one contains a representative of the desired form. The second step is a previously unpublished result due to Lenstra that implies that when $A[x]/(f(x))$ is maximal, every ideal class contains an ideal of degree one.
Given a set X of $n\times n$ matrices and a positive integer m, we consider the problem of estimating the cardinalities of the product sets $A_1 \cdots A_m$, where $A_i\in X$. When $X={\mathcal M}_n(\mathbb {Z};H)$, the set of $n\times n$ matrices with integer elements of size at most H, we give several bounds on the cardinalities of the product sets and solution sets of related equations such as $A_1 \cdots A_m=C$ and $A_1 \cdots A_m=B_1 \cdots B_m$. We also consider the case where X is the subset of matrices in ${\mathcal M}_n(\mathbb {F})$, where $\mathbb {F}$ is a field with bounded rank $k\leq n$. In this case, we completely classify the related product set.
Niven’s theorem asserts that $\{\cos (r\pi ) \mid r\in \mathbb {Q}\}\cap \mathbb {Q}=\{0,\pm 1,\pm 1/2\}.$ In this paper, we use elementary techniques and results from arithmetic dynamics to obtain an algorithm for classifying all values in the set $\{\cos (r\pi ) \mid r\in \mathbb {Q}\}\cap K$, where K is an arbitrary number field.
As an extension of Sylvester’s matrix, a tridiagonal matrix is investigated by determining both left and right eigenvectors. Orthogonality relations between left and right eigenvectors are derived. Two determinants of the matrices constructed by the left and right eigenvectors are evaluated in closed form.
Granville recently asked how the Mahler measure behaves in the context of polynomial dynamics. For a polynomial $f(z)=z^d+\cdots \in {\mathbb C}[z],\ \deg (f)\ge 2,$ we show that the Mahler measure of the iterates $f^n$ grows geometrically fast with the degree $d^n,$ and find the exact base of that exponential growth. This base is expressed via an integral of $\log ^+|z|$ with respect to the invariant measure of the Julia set for the polynomial $f.$ Moreover, we give sharp estimates for such an integral when the Julia set is connected.
By analogy with the trace of an algebraic integer
$\alpha $
with conjugates
$\alpha _1=\alpha , \ldots , \alpha _d$
, we define the G-measure
$ {\mathrm {G}} (\alpha )= \sum _{i=1}^d ( |\alpha _i| + 1/ | \alpha _i | )$
and the absolute
${\mathrm G}$
-measure
${\mathrm {g}}(\alpha )={\mathrm {G}}(\alpha )/d$
. We establish an analogue of the Schur–Siegel–Smyth trace problem for totally positive algebraic integers. Then we consider the case where
$\alpha $
has all its conjugates in a sector
$| \arg z | \leq \theta $
,
$0 < \theta < 90^{\circ }$
. We compute the greatest lower bound
$c(\theta )$
of the absolute G-measure of
$\alpha $
, for
$\alpha $
belonging to
$11$
consecutive subintervals of
$]0, 90 [$
. This phenomenon appears here for the first time, conforming to a conjecture of Rhin and Smyth on the nature of the function
$c(\theta )$
. All computations are done by the method of explicit auxiliary functions.
Let
$\alpha $
be a totally positive algebraic integer of degree d, with conjugates
$\alpha _1=\alpha , \alpha _2, \ldots , \alpha _d$
. The absolute
$S_k$
-measure of
$\alpha $
is defined by
$s_k(\alpha )= d^{-1} \sum _{i=1}^{d}\alpha _i^k$
. We compute the lower bounds
$\upsilon _k$
of
$s_k(\alpha )$
for each integer in the range
$2\leq k \leq 15$
and give a conjecture on the results for integers
$k>15$
. Then we derive the lower bounds of
$s_k(\alpha )$
for all real numbers
$k>2$
. Our computation is based on an improvement in the application of the LLL algorithm and analysis of the polynomials in the explicit auxiliary functions.
Let
$a,b$
and n be positive integers and let
$S=\{x_1, \ldots , x_n\}$
be a set of n distinct positive integers. For
${x\in S}$
, define
$G_{S}(x)=\{d\in S: d<x, \,d\mid x \ \mathrm {and} \ (d\mid y\mid x, y\in S)\Rightarrow y\in \{d,x\}\}$
. Denote by
$[S^a]$
the
$n\times n$
matrix having the ath power of the least common multiple of
$x_i$
and
$x_j$
as its
$(i,j)$
-entry. We show that the bth power matrix
$[S^b]$
is divisible by the ath power matrix
$[S^a]$
if
$a\mid b$
and S is gcd closed (that is,
$\gcd (x_i, x_j)\in S$
for all integers i and j with
$1\le i, j\le n$
) and
$\max _{x\in S} \{|G_S (x)|\}=1$
. This confirms a conjecture of Shaofang Hong [‘Divisibility properties of power GCD matrices and power LCM matrices’, Linear Algebra Appl.428 (2008), 1001–1008].
A finite set of integers A tiles the integers by translations if $\mathbb {Z}$ can be covered by pairwise disjoint translated copies of A. Restricting attention to one tiling period, we have $A\oplus B=\mathbb {Z}_M$ for some $M\in \mathbb {N}$ and $B\subset \mathbb {Z}$. This can also be stated in terms of cyclotomic divisibility of the mask polynomials $A(X)$ and $B(X)$ associated with A and B.
In this article, we introduce a new approach to a systematic study of such tilings. Our main new tools are the box product, multiscale cuboids and saturating sets, developed through a combination of harmonic-analytic and combinatorial methods. We provide new criteria for tiling and cyclotomic divisibility in terms of these concepts. As an application, we can determine whether a set A containing certain configurations can tile a cyclic group $\mathbb {Z}_M$, or recover a tiling set based on partial information about it. We also develop tiling reductions where a given tiling can be replaced by one or more tilings with a simpler structure. The tools introduced here are crucial in our proof in [24] that all tilings of period $(pqr)^2$, where $p,q,r$ are distinct odd primes, satisfy a tiling condition proposed by Coven and Meyerowitz [2].
In this paper, we prove the assertion that the number of monic cubic polynomials $F(x) = x^3 + a_2 x^2 + a_1 x + a_0$ with integer coefficients and irreducible, Galois over ${\mathbb {Q}}$ satisfying $\max \{|a_2|, |a_1|, |a_0|\} \leq X$ is bounded from above by $O(X (\log X)^2)$. We also count the number of abelian monic binary cubic forms with integer coefficients up to a natural equivalence relation ordered by the so-called Bhargava–Shankar height. Finally, we prove an assertion characterizing the splitting field of 2-torsion points of semi-stable abelian elliptic curves.
We use circulant matrices and hyperelliptic curves over finite fields to study some arithmetic properties of certain determinants involving Legendre symbols and kth power residues.
We obtain an effective analytic formula, with explicit constants, for the number of distinct irreducible factors of a polynomial
$f \in \mathbb {Z}[x]$
. We use an explicit version of Mertens’ theorem for number fields to estimate a related sum over rational primes. For a given
$f \in \mathbb {Z}[x]$
, our result yields a finite list of primes that certifies the number of distinct irreducible factors of f.