To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $Q(N;q,a)$ be the number of squares in the arithmetic progression $qn+a$, for $n=0$,$1,\ldots,N-1$, and let $Q(N)$ be the maximum of $Q(N;q,a)$ over all non-trivial arithmetic progressions $qn + a$. Rudin’s conjecture claims that $Q(N)=O(\sqrt{N})$, and in its stronger form that $Q(N)=Q(N;24,1)$ if $N\ge 6$. We prove the conjecture above for $6\le N\le 52$. We even prove that the arithmetic progression $24n+1$ is the only one, up to equivalence, that contains $Q(N)$ squares for the values of $N$ such that $Q(N)$ increases, for $7\le N\le 52$ ($N=8,13,16,23,27,36,41$and $52$).
Let $m$, $a$, $c$ be positive integers with $a\equiv 3, 5~({\rm mod} \hspace{0.334em} 8)$. We show that when $1+ c= {a}^{2} $, the exponential Diophantine equation $\mathop{({m}^{2} + 1)}\nolimits ^{x} + \mathop{(c{m}^{2} - 1)}\nolimits ^{y} = \mathop{(am)}\nolimits ^{z} $ has only the positive integer solution $(x, y, z)= (1, 1, 2)$ under the condition $m\equiv \pm 1~({\rm mod} \hspace{0.334em} a)$, except for the case $(m, a, c)= (1, 3, 8)$, where there are only two solutions: $(x, y, z)= (1, 1, 2), ~(5, 2, 4). $ In particular, when $a= 3$, the equation $\mathop{({m}^{2} + 1)}\nolimits ^{x} + \mathop{(8{m}^{2} - 1)}\nolimits ^{y} = \mathop{(3m)}\nolimits ^{z} $ has only the positive integer solution $(x, y, z)= (1, 1, 2)$, except if $m= 1$. The proof is based on elementary methods and Baker’s method.
Let $q$ be an odd prime such that ${q}^{t} + 1= 2{c}^{s} $, where $c, t$ are positive integers and $s= 1, 2$. We show that the Diophantine equation ${x}^{2} + {q}^{m} = {c}^{n} $ has only the positive integer solution $(x, m, n)= ({c}^{s} - 1, t, 2s)$ under some conditions. The proof is based on elementary methods and a result concerning the Diophantine equation $({x}^{n} - 1)/ (x- 1)= {y}^{2} $ due to Ljunggren. We also verify that when $2\leq c\leq 30$ with $c\not = 12, 24$, the Diophantine equation ${x}^{2} + \mathop{(2c- 1)}\nolimits ^{m} = {c}^{n} $ has only the positive integer solution $(x, m, n)= (c- 1, 1, 2). $
Let $(a, b, c)$ be a primitive Pythagorean triple satisfying ${a}^{2} + {b}^{2} = {c}^{2} . $ In 1956, Jeśmanowicz conjectured that for any given positive integer $n$ the only solution of $\mathop{(an)}\nolimits ^{x} + \mathop{(bn)}\nolimits ^{y} = \mathop{(cn)}\nolimits ^{z} $ in positive integers is $x= y= z= 2. $ In this paper, for the primitive Pythagorean triple $(a, b, c)= (4{k}^{2} - 1, 4k, 4{k}^{2} + 1)$ with $k= {2}^{s} $ for some positive integer $s\geq 0$, we prove the conjecture when $n\gt 1$ and certain divisibility conditions are satisfied.
We use bounds of mixed character sum to study the distribution of solutions to certain polynomial systems of congruences modulo a prime $p$. In particular, we obtain nontrivial results about the number of solutions in boxes with the side length below ${p}^{1/ 2} $, which seems to be the limit of more general methods based on the bounds of exponential sums along varieties.
We solve the equation ${x}^{a} + {x}^{b} + 1= {y}^{q} $ in positive integers $x, y, a, b$ and $q$ with $a\gt b$ and $q\geq 2$ coprime to $\phi (x)$. This requires a combination of a variety of techniques from effective Diophantine approximation, including lower bounds for linear forms in complex and $p$-adic logarithms, the hypergeometric method of Thue and Siegel applied $p$-adically, local methods, and the algorithmic resolution of Thue equations.
Given an intersection of two quadrics $X\subset { \mathbb{P} }^{m- 1} $, with $m\geq 9$, the quantitative arithmetic of the set $X( \mathbb{Q} )$ is investigated under the assumption that the singular locus of $X$ consists of a pair of conjugate singular points defined over $ \mathbb{Q} (i)$.
We use a generalisation of Vinogradov’s mean value theorem of Parsell et al. [‘Near-optimal mean value estimates for multidimensional Weyl sums’, arXiv:1205.6331] and ideas of Schmidt [‘Irregularities of distribution. IX’, Acta Arith.27 (1975), 385–396] to give nontrivial bounds for the number of solutions to polynomial congruences, when the solutions lie in a very general class of sets, including all convex sets.
Nous démontrons, sous la forme forte conjecturée par Peyre, la conjecture de Manin pour les surfaces de Châtelet dont les équations sont du type ${y}^{2} + {z}^{2} = P(x, 1)$, où $P$ est une forme binaire quartique à coefficients entiers irréductible sur $ \mathbb{Q} [i] $ ou produit de deux formes quadratiques à coefficients entiers irréductibles sur $ \mathbb{Q} [i] $. De plus, nous fournissons une estimation explicite du terme d’erreur de la formule asymptotique sous-jacente. Cela finalise essentiellement la validation de la conjecture de Manin pour l’ensemble des surfaces de Châtelet. La preuve s’appuie sur deux méthodes nouvelles, concernant, du part, les estimations en moyenne d’oscillations locales de caractères sur les diviseurs, et, d’autre part, les majorations de certaines fonctions arithmétiques de formes binaires.
Let $a, b, c$ be relatively prime positive integers such that ${a}^{2} + {b}^{2} = {c}^{2} $. In 1956, Jeśmanowicz conjectured that for any positive integer $n$, the only solution of $\mathop{(an)}\nolimits ^{x} + \mathop{(bn)}\nolimits ^{y} = \mathop{(cn)}\nolimits ^{z} $ in positive integers is $(x, y, z)= (2, 2, 2)$. In this paper, we consider Jeśmanowicz’ conjecture for Pythagorean triples $(a, b, c)$ if $a= c- 2$ and $c$ is a Fermat prime. For example, we show that Jeśmanowicz’ conjecture is true for $(a, b, c)= (3, 4, 5)$, $(15, 8, 17)$, $(255, 32, 257)$, $(65535, 512, 65537)$.
Let $p$ be a prime. In this paper, we present a detailed $p$-adic analysis on factorials and double factorials and their congruences. We give good bounds for the $p$-adic sizes of the coefficients of the divided universal Bernoulli number ${B}_{n} / n$ when $n$ is divisible by $p- 1$. Using these, we then establish the universal Kummer congruences modulo powers of a prime $p$ for the divided universal Bernoulli numbers ${B}_{n} / n$ when $n$ is divisible by $p- 1$.
with $x, y, z$ positive integers. The Erdős–Straus conjecture asserts that $f(n)\gt 0$ for every $n\geq 2$. In this paper we obtain a number of upper and lower bounds for $f(n)$ or $f(p)$ for typical values of natural numbers $n$ and primes $p$. For instance, we establish that
These upper and lower bounds show that a typical prime has a small number of solutions to the Erdős–Straus Diophantine equation; small, when compared with other additive problems, like Waring’s problem.
Motivated by some earlier Diophantine works on triangular numbers by Ljunggren and Cassels, we consider similar problems for general polygonal numbers.
In [Gorodnik and Nevo, Counting lattice points, J. Reine Angew. Math. 663 (2012), 127–176] an effective solution of the lattice point counting problem in general domains in semisimple S-algebraic groups and affine symmetric varieties was established. The method relies on the mean ergodic theorem for the action of G on G/Γ, and implies uniformity in counting over families of lattice subgroups admitting a uniform spectral gap. In the present paper we extend some methods developed in [Nevo and Sarnak, Prime and almost prime integral points on principal homogeneous spaces, Acta Math. 205 (2010), 361–402] and use them to establish several useful consequences of this property, including:
(1) effective upper bounds on lifting for solutions of congruences in affine homogeneous varieties;
(2) effective upper bounds on the number of integral points on general subvarieties of semisimple group varieties;
(3) effective lower bounds on the number of almost prime points on symmetric varieties;
(4) effective upper bounds on almost prime solutions of congruences in homogeneous varieties.
We relate a previous result of ours on families of Diophantine equations having only trivial solutions with a result on the approximation of an algebraic number by products of rational numbers and units. We compare this approximation with a Liouville type estimate, and with an estimate arising from a lower bound for a linear combination of logarithms.
A number is squareful if the exponent of every prime in its prime factorization is at least two. In this paper, we give, for a fixed $l$, the number of pairs of squareful numbers $n$, $n+l$ such that $n$is less than a given quantity.
We consider the Brocard–Ramanujan type Diophantine equation y2=x!+A and ask about values of A∈ℤ for which there are at least three solutions in the positive integers. In particular, we prove that the set 𝒜 consisting of integers with this property is infinite. In fact we construct a two-parameter family of integers contained in 𝒜. We also give some computational results related to this equation.
We study the equation a2−2b6=cp and its specialization a2−2=cp, where p is a prime, using the modular method. In particular, we use a ℚ-curve defined over for which the solution (a,b,c)=(±1,±1,−1) gives rise to a CM-form. This allows us to apply the modular method to resolve the equation a2−2b6=cp for p in certain congruence classes. For the specialization a2−2=cp, we use the multi-Frey technique of Siksek to obtain further refined results.
Brizolis asked for which primes p greater than 3 there exists a pair (g,h) such that h is a fixed point of the discrete exponential map with base g, or equivalently h is a fixed point of the discrete logarithm with base g. Various authors have contributed to the understanding of this problem. In this paper, we use p-adic methods, primarily Hensel’s lemma and p-adic interpolation, to count fixed points, two-cycles, collisions, and solutions to related equations modulo powers of a prime p.