To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper we solve the equation f(g(x))=f(x)hm(x) where f(x), g(x) and h(x) are unknown polynomials with coefficients in an arbitrary field K, f(x) is nonconstant and separable, deg g≥2, the polynomial g(x) has nonzero derivative g′(x)≠0in K[x]and the integer m≥2is not divisible by the characteristic of the field K. We prove that this equation has no solutions if deg f≥3 . If deg f=2 , we prove that m=2and give all solutions explicitly in terms of Chebyshev polynomials. The Diophantine applications for such polynomials f(x) , g(x) , h(x)with coefficients in ℚ or ℤ are considered in the context of the conjecture of Cassaigne et al. on the values of Liouville’s λ function at points f(r) , r∈ℚ.
We develop Weyl differencing and Hua-type lemmata for a class of multidimensional exponential sums. We then apply our estimates to bound the number of variables required to establish an asymptotic formula for the number of solutions of a system of diophantine equations arising from the study of linear spaces on hypersurfaces. For small values of the degree and dimension, our results are superior to those stemming from the author’s earlier work on Vinogradov’s mean value theorem.
Let p be an odd prime. In this paper, we consider the equation and we describe all its solutions. Moreover, we prove that this equation has no solution (x,y,m,n) when n>3 is an odd prime and y is not the sum of two consecutive squares. This extends the work of Tengely [On the diophantine equation x2+q2m=2yp, Acta Arith.127(1) (2007), 71–86].
Let a,b,c be relatively prime positive integers such that a2+b2=c2. Half a century ago, Jeśmanowicz [‘Several remarks on Pythagorean numbers’, Wiadom. Mat.1 (1955/56), 196–202] conjectured that for any given positive integer n the only solution of (an)x+(bn)y=(cn)z in positive integers is (x,y,z)=(2,2,2). In this paper, we show that (8n)x+(15n)y=(17n)z has no solution in positive integers other than (x,y,z)=(2,2,2).
Extending classical results of Nair and Tenenbaum, we provide general, sharp upper bounds for sums of the type where x,y,u,v have comparable logarithms, F belongs to a class defined by a weak form of sub-multiplicativity, and the Qj are arbitrary binary forms. A specific feature of the results is that the bounds are uniform within the F-class and that, as in a recent version given by Henriot, the dependency with respect to the coefficients of the Qj is made explicit. These estimates play a crucial rôle in the proof, published separately by the authors, of Manin’s conjecture for Châtelet surfaces.
Let (a,b,c) be a primitive Pythagorean triple such that b is even. In 1956, Jeśmanowicz conjectured that the equation ax+by=cz has the unique solution (x,y,z)=(2,2,2) in the positive integers. This is one of the most famous unsolved problems on Pythagorean triples. In this paper we propose a similar problem (which we call the shuffle variant of Jeśmanowicz’ problem). Our problem states that the equation cx+by=az with x,y and z positive integers has the unique solution (x,y,z)=(1,1,2) if c=b+1and has no solutions if c>b+1 . We prove that the shuffle variant of the Jeśmanowicz problem is true if c≡1 mod b.
We study Markov measures and p-adic random walks with the use of states on the Cuntz algebras Op. Via the Gelfand–Naimark–Segal construction, these come from families of representations of Op. We prove that these representations reflect selfsimilarity especially well. In this paper, we consider a Cuntz–Krieger type algebra where the adjacency matrix depends on a parameter q ( q=1 is the case of Cuntz–Krieger algebra). This is an ongoing work generalizing a construction of certain measures associated to random walks on graphs.
A Diophantinem-tuple is a set A of m positive integers such that ab+1 is a perfect square for every pair a,b of distinct elements of A. We derive an asymptotic formula for the number of Diophantine quadruples whose elements are bounded by x. In doing so, we extend two existing tools in ways that might be of independent interest. The Erdős–Turán inequality bounds the discrepancy between the number of elements of a sequence that lie in a particular interval modulo 1 and the expected number; we establish a version of this inequality where the interval is allowed to vary. We also adapt an argument of Hooley on the equidistribution of solutions of polynomial congruences to handle reducible quadratic polynomials.
In this paper, we study how close the terms of a finite arithmetic progression can get to a perfect square. The answer depends on the initial term, the common difference and the number of terms in the arithmetic progression.
In Gun and Ramakrishnan [‘On special values of certain Dirichlet L-functions’, Ramanujan J.15 (2008), 275–280], we gave expressions for the special values of certain Dirichlet L-function in terms of finite sums involving Jacobi symbols. In this note we extend our earlier results by giving similar expressions for two more special values of Dirichlet L-functions, namely L(−1,χm) and L(−2,χ−m′), where m,m′ are square-free integers with m≡1 mod 8 and m′≡3 mod 8 and χD is the Kronecker symbol . As a consequence, using the identities of Cohen [‘Sums involving the values at negative integers of L-functions of quadratic characters’, Math. Ann.217 (1975), 271–285], we also express the finite sums with Jacobi symbols in terms of sums involving divisor functions. Finally, we observe that the proof of Theorem 1.2 in Gun and Ramakrishnan (as above) is a direct consequence of Equation (24) in Gun, Manickam and Ramakrishnan [‘A canonical subspace of modular forms of half-integral weight’, Math. Ann.347 (2010), 899–916].
We discuss the Mordell–Weil sieve as a general technique for proving results concerning rational points on a given curve. In the special case of curves of genus 2, we describe quite explicitly how the relevant local information can be obtained if one does not want to restrict to mod p information at primes of good reduction. We describe our implementation of the Mordell–Weil sieve algorithm and discuss its efficiency.
Let f∈ℚ[X] and let us consider a Diophantine equation z2=f(x)2±f(y)2. In this paper, we continue the study of the existence of integer solutions of the equation, when the degree of f is 2 and if f(x) is a triangular number or a tetrahedral number.
We generalize the main result of the paper by Bennett and Mulholland [‘On the diophantine equation xn+yn=2αpz2’, C. R. Math. Acad. Sci. Soc. R. Can.28 (2006), 6–11] concerning the solubility of the diophantine equation xn+yn=2αpz2. We also demonstrate, by way of examples, that questions about solubility of a class of diophantine equations of type (3,3,p) or (4,2,p) can be reduced, in certain cases, to studying several equations of the type (p,p,2).
We exhibit central simple algebras over the function field of a diagonal quartic surface over the complex numbers that represent the 2-torsion part of its Brauer group. We investigate whether the 2-primary part of the Brauer group of a diagonal quartic surface over a number field is algebraic and give sufficient conditions for this to be the case. In the last section we give an obstruction to weak approximation due to a transcendental class on a specific diagonal quartic surface, an obstruction which cannot be explained by the algebraic Brauer group which in this case is just the constant algebras.
When p is a prime number, and k1,…,kt are natural numbers with 1≤k1<k2<⋯<kt<p, we show that the simultaneous congruences ∑ t1xkji≡∑ t1ykjimodp (1≤j≤t) possess at most k1⋯ktpt solutions with 1≤xi,yi≤p (1≤i≤t). Analogous conclusions are provided when one or more of the exponents ki is negative.
Let X be a projective cubic hypersurface of dimension 11 or more, which is defined over ℚ. We show that X(ℚ) is non-empty provided that the cubic form defining X can be written as the sum of two forms that share no common variables.
We show that a system of r quadratic forms over a 𝔭-adic field in at least 4r+1 variables will have a non-trivial zero as soon as the cardinality of the residue field is large enough. In contrast, the Ax–Kochen theorem [J. Ax and S. Kochen, Diophantine problems over local fields. I, Amer. J. Math. 87 (1965), 605–630] requires the characteristic to be large in terms of the degree of the field over ℚp. The proofs use a 𝔭-adic minimization technique, together with counting arguments over the residue class field, based on considerations from algebraic geometry.