To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We give a construction of integral local Shimura varieties which are formal schemes that generalise the well-known integral models of the Drinfeld p-adic upper half spaces. The construction applies to all classical groups, at least for odd p. These formal schemes also generalise the formal schemes defined by Rapoport-Zink via moduli of p-divisible groups, and are characterised purely in group-theoretic terms.
More precisely, for a local p-adic Shimura datum $(G, b, \mu)$ and a quasi-parahoric group scheme ${\mathcal {G}} $ for G, Scholze has defined a functor on perfectoid spaces which parametrises p-adic shtukas. He conjectured that this functor is representable by a normal formal scheme which is locally formally of finite type and flat over $O_{\breve E}$. Scholze-Weinstein proved this conjecture when $(G, b, \mu)$ is of (P)EL type by using Rapoport-Zink formal schemes. We prove this conjecture for any $(G, \mu)$ of abelian type when $p\neq 2$, and when $p=2$ and G is of type A or C. We also relate the generic fibre of this formal scheme to the local Shimura variety, a rigid-analytic space attached by Scholze to $(G, b, \mu , {\mathcal {G}})$.
Rigid meromorphic cocycles are defined in the setting of orthogonal groups of arbitrary real signature and constructed in some instances via a p-adic analogue of Borcherds’ singular theta lift. The values of rigid meromorphic cocycles at special points of an associated p-adic symmetric space are then conjectured to belong to class fields of suitable global reflex fields, suggesting an eventual framework for explicit class field theory beyond the setting of CM fields explored in the treatise of Shimura and Taniyama.
This article describes two anisotropic area-preserving flows for plane curves, both of which are considered to deform one convex curve into another. Different monotonic entropy functions are identified under these flows, which can be utilized to derive two significant entropy inequalities: the log-Minkowski inequality and the curvature entropy inequality, as well as the Brunn–Minkowski inequality.
We sharpen and generalize the dimension growth bounds for the number of points of bounded height lying on an irreducible algebraic variety of degree d, over any global field. In particular, we focus on the affine hypersurface situation by relaxing the condition on the top degree homogeneous part of the polynomial describing the affine hypersurface, while sharpening the dependence on the degree in the bounds compared to previous results. We formulate a conjecture about plane curves which provides a conjectural approach to the uniform degree $3$ case (the only remaining open case). For induction on dimension, we develop a higher-dimensional effective version of Hilbert’s irreducibility theorem, which is of independent interest.
In this paper, we prove the following result advocating the importance of monomial quadratic relations between holomorphic CM periods. For any simple CM abelian variety A, we can construct a CM abelian variety B such that all non-trivial Hodge relations between the holomorphic periods of the product $A\times B$ are generated by monomial quadratic ones which are also explicit. Moreover, B splits over the Galois closure of the CM field associated with A.
We consider the question of when a Jacobian of a curve of genus $2g$ admits a $(2,2)$-isogeny to a product of two polarized dimension g abelian varieties. We find that one of them must be a Jacobian itself and, if the associated curve is hyperelliptic, so is the other.
For $g=2,$ this allows us to describe $(2,2)$-decomposable genus $4$ Jacobians in terms of Prym varieties. We describe the locus of such genus $4$ curves in terms of the geometry of the Igusa quartic threefold. We also explain how our characterization relates to Prym varieties of unramified double covers of plane quartic curves, and we describe this Prym map in terms of $6$ and $7$ points in $\mathbb {P}^3$.
We also investigate which genus $4$ Jacobians admit a $2$-isogeny to the square of a genus $2$ Jacobian and give a full description of the hyperelliptic ones. While most of the families we find are of the expected dimension $1$, we also find a family of unexpectedly high dimension $2$.
Let E be an elliptic curve over the rationals which does not have complex multiplication. Serre showed that the adelic representation attached to $E/\mathbb {Q}$ has open image, and in particular, there is a minimal natural number $C_E$ such that the mod $\ell $ representation ${\bar {\rho }}_{E,\ell }$ is surjective for any prime $\ell> C_E$. Assuming the Generalized Riemann Hypothesis, Mayle–Wang gave explicit bounds for $C_E$ which are logarithmic in the conductor of E and have explicit constants. The method is based on using effective forms of the Chebotarev Density Theorem together with the Faltings–Serre method, in particular, using the “deviation group” of the $2$-adic representations attached to two elliptic curves.
By considering quotients of the deviation group and a characterization of the images of the $2$-adic representation $\rho _{E,2}$ by Rouse and Zureick–Brown, we show in this article how to further reduce the constants in Mayle–Wang’s results. Another result of independent interest are improved effective isogeny theorems for elliptic curves over the rationals.
We construct universal G-zips on good reductions of the Pappas-Rapoport splitting models for PEL-type Shimura varieties. We study the induced Ekedahl-Oort stratification, which sheds new light on the mod p geometry of splitting models. Building on the work of Lan on arithmetic compactifications of splitting models, we further extend these constructions to smooth toroidal compactifications. Combined with the work of Goldring-Koskivirta on group theoretical Hasse invariants, we get an application to Galois representations associated to torsion classes in coherent cohomology in the ramified setting.
We formulate Guo–Jacquet type fundamental lemma conjectures and arithmetic transfer conjectures for inner forms of $GL_{2n}$. Our main results confirm these conjectures for division algebras of invariant $1/4$ and $3/4$.
We consider Shimura varieties associated to a unitary group of signature $(n-s,s)$ where n is even. For these varieties, we construct smooth p-adic integral models for $s=1$ and regular p-adic integral models for $s=2$ and $s=3$ over odd primes p which ramify in the imaginary quadratic field with level subgroup at p given by the stabilizer of a $\pi $-modular lattice in the hermitian space. Our construction, which has an explicit moduli-theoretic description, is given by an explicit resolution of a corresponding local model.
We give a short proof of the anticyclotomic analogue of the “strong” main conjecture of Kurihara on Fitting ideals of Selmer groups for elliptic curves with good ordinary reduction under mild hypotheses. More precisely, we completely determine the initial Fitting ideal of Selmer groups over finite subextensions of an imaginary quadratic field in its anticyclotomic $\mathbb {Z}_p$-extension in terms of Bertolini–Darmon’s theta elements.
In the early 2000s, Ramakrishna asked the question: for the elliptic curve
\[E\;:\; y^2 = x^3 - x,\]
what is the density of primes p for which the Fourier coefficient $a_p(E)$ is a cube modulo p? As a generalisation of this question, Weston–Zaurova formulated conjectures concerning the distribution of power residues of degree m of the Fourier coefficients of elliptic curves $E/\mathbb{Q}$ with complex multiplication. In this paper, we prove the conjecture of Weston–Zaurova for cubic residues using the analytic theory of spin. Our proof works for all elliptic curves E with complex multiplication.
We construct explicit generating series of arithmetic extensions of Kudla’s special divisors on integral models of unitary Shimura varieties over CM fields with arbitrary split levels and prove that they are modular forms valued in the arithmetic Chow groups. This provides a partial solution to Kudla’s modularity problem. The main ingredient in our construction is S. Zhang’s theory of admissible arithmetic divisors. The main ingredient in the proof is an arithmetic mixed Siegel-Weil formula.
The cyclicity and Koblitz conjectures ask about the distribution of primes of cyclic and prime-order reduction, respectively, for elliptic curves over $\mathbb {Q}$. In 1976, Serre gave a conditional proof of the cyclicity conjecture, but the Koblitz conjecture (refined by Zywina in 2011) remains open. The conjectures are now known unconditionally “on average” due to work of Banks–Shparlinski and Balog–Cojocaru–David. Recently, there has been a growing interest in the cyclicity conjecture for primes in arithmetic progressions (AP), with relevant work by Akbal–Güloğlu and Wong. In this article, we adapt Zywina’s method to formulate the Koblitz conjecture for AP and refine a theorem of Jones to establish results on the moments of the constants in both the cyclicity and Koblitz conjectures for AP. In doing so, we uncover a somewhat counterintuitive phenomenon: On average, these two constants are oppositely biased over congruence classes. Finally, in an accompanying repository, we give Magma code for computing the constants discussed in this article.
Given an elliptic curve $ E $ over $ \mathbb {Q} $ of analytic rank zero, its L-function can be twisted by an even primitive Dirichlet character $ \chi $ of order $ q $, and in many cases its associated special L-value $ \mathscr {L}(E, \chi ) $ is known to be integral after normalizing by certain periods. This article determines the precise value of $ \mathscr {L}(E, \chi ) $ in terms of Birch–Swinnerton-Dyer invariants when $ q = 3 $, classifies their asymptotic densities modulo $ 3 $ by fixing $ E $ and varying $ \chi $, and presents a lower bound on the $ 3 $-adic valuation of $ \mathscr {L}(E, 1) $, all of which arise from a congruence of modular symbols. These results also explain some phenomena observed by Dokchitser–Evans–Wiersema and by Kisilevsky–Nam.
We explore the relationship between (3-isogeny induced) Selmer group of an elliptic curve and the (3 part of) the ideal class group, over certain non-abelian number fields.
In this paper, we investigate Frobenius eigenvalues of the compactly supported rigid cohomology of a variety defined over a finite field with q elements, using Dwork’s method. Our study yields several arithmetic consequences. First, we establish that the zeta functions of a set of related affine varieties can reveal all Frobenius eigenvalues of the rigid cohomology of the variety up to a Tate twist. This result does not seem to be known for the $\ell$-adic cohomology. As a second application, we provide several q-divisibility lower bounds for the Frobenius eigenvalues of the rigid cohomology of the variety, in terms of the dimension and multi-degrees of the defining equations. These divisibility bounds for rigid cohomology are generally better than what is suggested from the best known divisibility bounds in $\ell$-adic cohomology, both before and after the middle cohomological degree.
Continuing our work on group-theoretic generalisations of the prime Ax–Katz Theorem, we give a lower bound on the p-adic divisibility of the cardinality of the set of simultaneous zeros $Z(f_1,f_2,\dots,f_r)$ of r maps $f_j\,{:}\,A\rightarrow B_j$ between arbitrary finite commutative groups A and $B_j$ in terms of the invariant factors of $A, B_1,B_2, \cdots,B_r$ and the functional degrees of the maps $f_1,f_2, \dots,f_r$.
Let p be an odd prime, and suppose that $E_1$ and $E_2$ are two elliptic curves which are congruent modulo p. Fix an Artin representation $\tau\,{:}\,G_{F}\rightarrow \mathrm{GL}_2(\mathbb{C})$ over a totally real field F, induced from a Hecke character over a CM-extension $K/F$. Assuming $E_1$ and $E_2$ are ordinary at p, we compute the variation in the $\mu$- and $\lambda$-invariants for the $\tau$-part of the Iwasawa Main Conjecture, as one switches from $E_1$ to $E_2$. Provided an Euler system exists, it will follow directly that IMC$(E_1,\tau)$ is true if and only if IMC$(E_2,\tau)$ is true.
This paper discusses variants of Weber’s class number problem in the spirit of arithmetic topology to connect the results of Sinnott–Kisilevsky and Kionke. Let p be a prime number. We first prove the p-adic convergence of class numbers in a ${\mathbb{Z}_{p}}$-extension of a global field and a similar result in a ${\mathbb{Z}_{p}}$-cover of a compact 3-manifold. Secondly, we establish an explicit formula for the p-adic limit of the p-power-th cyclic resultants of a polynomial using roots of unity of orders prime to p, the p-adic logarithm, and the Iwasawa invariants. Finally, we give thorough investigations of torus knots, twist knots, and elliptic curves; we complete the list of the cases with p-adic limits being in ${\mathbb{Z}}$ and find the cases such that the base p-class numbers are small and $\nu$’s are arbitrarily large.