We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the double character sum $\sum \limits _{\substack {m\leq X,\\m\mathrm {\ odd}}}\sum \limits _{\substack {n\leq Y,\\n\mathrm {\ odd}}}\left (\frac {m}{n}\right )$ and its smoothly weighted counterpart. An asymptotic formula with power saving error term was obtained by Conrey, Farmer, and Soundararajan by applying the Poisson summation formula. The result is interesting because the main term involves a non-smooth function. In this paper, we apply the inverse Mellin transform twice and study the resulting double integral that involves a double Dirichlet series. This method has two advantages—it leads to a better error term, and the surprising main term naturally arises from three residues of the double Dirichlet series.
An explicit formula forthe mean value of $\vert L(1,\chi )\vert ^2$ is known, where $\chi $ runs over all odd primitive Dirichlet characters of prime conductors p. Bounds on the relative class number of the cyclotomic field ${\mathbb Q}(\zeta _p)$ follow. Lately, the authors obtained that the mean value of $\vert L(1,\chi )\vert ^2$ is asymptotic to $\pi ^2/6$, where $\chi $ runs over all odd primitive Dirichlet characters of prime conductors $p\equiv 1\ \ \pmod {2d}$ which are trivial on a subgroup H of odd order d of the multiplicative group $({\mathbb Z}/p{\mathbb Z})^*$, provided that $d\ll \frac {\log p}{\log \log p}$. Bounds on the relative class number of the subfield of degree $\frac {p-1}{2d}$ of the cyclotomic field ${\mathbb Q}(\zeta _p)$ follow. Here, for a given integer $d_0>1$, we consider the same questions for the nonprimitive odd Dirichlet characters $\chi '$ modulo $d_0p$ induced by the odd primitive characters $\chi $ modulo p. We obtain new estimates for Dedekind sums and deduce that the mean value of $\vert L(1,\chi ')\vert ^2$ is asymptotic to $\frac {\pi ^2}{6}\prod _{q\mid d_0}\left (1-\frac {1}{q^2}\right )$, where $\chi $ runs over all odd primitive Dirichlet characters of prime conductors p which are trivial on a subgroup H of odd order $d\ll \frac {\log p}{\log \log p}$. As a consequence, we improve the previous bounds on the relative class number of the subfield of degree $\frac {p-1}{2d}$ of the cyclotomic field ${\mathbb Q}(\zeta _p)$. Moreover, we give a method to obtain explicit formulas and use Mersenne primes to show that our restriction on d is essentially sharp.
Fujii obtained a formula for the average number of Goldbach representations with lower-order terms expressed as a sum over the zeros of the Riemann zeta function and a smaller error term. This assumed the Riemann Hypothesis. We obtain an unconditional version of this result and obtain applications conditional on various conjectures on zeros of the Riemann zeta function.
We prove some zero density theorems for certain families of Dirichlet L-functions. More specifically, the subjects of our interest are the collections of Dirichlet L-functions associated with characters to moduli from certain sparse sets and of certain fixed orders.
We investigate the large values of the derivatives of the Riemann zeta function $\zeta (s)$ on the 1-line. We give a larger lower bound for $\max _{t\in [T,2T]}|\zeta ^{(\ell )}(1+{i} t)|$, which improves the previous result established by Yang [‘Extreme values of derivatives of the Riemann zeta function’, Mathematika68 (2022), 486–510].
We prove an analogue of Selberg’s zero density estimate for
$\zeta(s)$
that holds for any
$\textrm{GL}_2$
L-function. We use this estimate to study the distribution of the vector of fractional parts of
$\gamma\boldsymbol{\alpha}$
, where
$\boldsymbol{\alpha}\in\mathbb{R}^n$
is fixed and
$\gamma$
varies over the imaginary parts of the nontrivial zeros of a
$\textrm{GL}_2$
L-function.
We study the moments
$M_k(T;\,\alpha) = \int_T^{2T} |\zeta(s,\alpha)|^{2k}\,dt$
of the Hurwitz zeta function
$\zeta(s,\alpha)$
on the critical line,
$s = 1/2 + it$
with a rational shift
$\alpha \in \mathbb{Q}$
. We conjecture, in analogy with the Riemann zeta function, that
$M_k(T;\,\alpha) \sim c_k(\alpha) T (\!\log T)^{k^2}$
. Using heuristics from analytic number theory and random matrix theory, we conjecturally compute
$c_k(\alpha)$
. In the process, we investigate moments of products of Dirichlet L-functions on the critical line. We prove some of our conjectures for the cases
$k = 1,2$
.
We introduce interpolated multiple Hurwitz polylogs and interpolated multiple Hurwitz zeta values. In addition, we discuss the generating functions for the sum of the polylogs/zeta values of fixed weight, depth, and all heights. The functions are expressed in terms of generalized hypergeometric functions. Compared with the pioneering results of Ohno and Zagier on the generating function, our setup generalizes the results in three directions, namely, at general heights, with a t-interpolation, and as a Hurwitz type. As an application, by fixing the Hurwitz parameter to rational numbers, the generating functions for multiple zeta values with level are given.
We study Ohno–Zagier type relations for multiple t-values and multiple t-star values. We represent the generating function of sums of multiple t-(star) values with fixed weight, depth and height in terms of the generalised hypergeometric function
$\,_3F_2$
. As applications, we get a formula for the generating function of sums of multiple t-(star) values of maximal height and a weighted sum formula for sums of multiple t-(star) values with fixed weight and depth.
We study approximations for the Lévy area of Brownian motion which are based on the Fourier series expansion and a polynomial expansion of the associated Brownian bridge. Comparing the asymptotic convergence rates of the Lévy area approximations, we see that the approximation resulting from the polynomial expansion of the Brownian bridge is more accurate than the Kloeden–Platen–Wright approximation, whilst still only using independent normal random vectors. We then link the asymptotic convergence rates of these approximations to the limiting fluctuations for the corresponding series expansions of the Brownian bridge. Moreover, and of interest in its own right, the analysis we use to identify the fluctuation processes for the Karhunen–Loève and Fourier series expansions of the Brownian bridge is extended to give a stand-alone derivation of the values of the Riemann zeta function at even positive integers.
satisfying a familiar functional equation involving the gamma function $\Gamma (s)$. Two general identities are established. The first involves the modified Bessel function $K_{\mu }(z)$, and can be thought of as a ‘modular’ or ‘theta’ relation wherein modified Bessel functions, instead of exponential functions, appear. Appearing in the second identity are $K_{\mu }(z)$, the Bessel functions of imaginary argument $I_{\mu }(z)$, and ordinary hypergeometric functions ${_2F_1}(a,b;c;z)$. Although certain special cases appear in the literature, the general identities are new. The arithmetical functions appearing in the identities include Ramanujan’s arithmetical function $\tau (n)$, the number of representations of n as a sum of k squares $r_k(n)$, and primitive Dirichlet characters $\chi (n)$.
In this paper, we obtain a precise formula for the one-level density of L-functions attached to non-Galois cubic Dedekind zeta functions. We find a secondary term which is unique to this context, in the sense that no lower-order term of this shape has appeared in previously studied families. The presence of this new term allows us to deduce an omega result for cubic field counting functions, under the assumption of the Generalised Riemann Hypothesis. We also investigate the associated L-functions Ratios Conjecture and find that it does not predict this new lower-order term. Taking into account the secondary term in Roberts’s conjecture, we refine the Ratios Conjecture to one which captures this new term. Finally, we show that any improvement in the exponent of the error term of the recent Bhargava–Taniguchi–Thorne cubic field counting estimate would imply that the best possible error term in the refined Ratios Conjecture is
$O_\varepsilon (X^{-\frac 13+\varepsilon })$
. This is in opposition with all previously studied families in which the expected error in the Ratios Conjecture prediction for the one-level density is
$O_\varepsilon (X^{-\frac 12+\varepsilon })$
.
We establish the optimal order of Malliavin-type remainders in the asymptotic density approximation formula for Beurling generalized integers. Given $\alpha \in (0,1]$ and $c>0$ (with $c\leq 1$ if $\alpha =1$), a generalized number system is constructed with Riemann prime counting function $ \Pi (x)= \operatorname {\mathrm {Li}}(x)+ O(x\exp (-c \log ^{\alpha } x ) +\log _{2}x), $ and whose integer counting function satisfies the extremal oscillation estimate $N(x)=\rho x + \Omega _{\pm }(x\exp (- c'(\log x\log _{2} x)^{\frac {\alpha }{\alpha +1}})$ for any $c'>(c(\alpha +1))^{\frac {1}{\alpha +1}}$, where $\rho>0$ is its asymptotic density. In particular, this improves and extends upon the earlier work [Adv. Math. 370 (2020), Article 107240].
A new reciprocity formula for Dirichlet L-functions associated to an arbitrary primitive Dirichlet character of prime modulus q is established. We find an identity relating the fourth moment of individual Dirichlet L-functions in the t-aspect to the cubic moment of central L-values of Hecke–Maaß newforms of level at most
$q^{2}$
and primitive central character
$\psi ^{2}$
averaged over all primitive nonquadratic characters
$\psi $
modulo q. Our formula can be thought of as a reverse version of recent work of Petrow–Young. Direct corollaries involve a variant of Iwaniec’s short interval fourth moment bound and the twelfth moment bound for Dirichlet L-functions, which generalise work of Jutila and Heath-Brown, respectively. This work traverses an intersection of classical analytic number theory and automorphic forms.
The Euler–Mascheroni constant
$\gamma =0.5772\ldots \!$
is the
$K={\mathbb Q}$
example of an Euler–Kronecker constant
$\gamma _K$
of a number field
$K.$
In this note, we consider the size of the
$\gamma _q=\gamma _{K_q}$
for cyclotomic fields
$K_q:={\mathbb Q}(\zeta _q).$
Assuming the Elliott–Halberstam Conjecture (EH), we prove uniformly in Q that
In other words, under EH, the
$\gamma _q /\!\log q$
in these ranges converge to the one point distribution at
$1$
. This theorem refines and extends a previous result of Ford, Luca and Moree for prime
$q.$
The proof of this result is a straightforward modification of earlier work of Fouvry under the assumption of EH.
Conditional on the extended Riemann hypothesis, we show that with high probability, the characteristic polynomial of a random symmetric
$\{\pm 1\}$
-matrix is irreducible. This addresses a question raised by Eberhard in recent work. The main innovation in our work is establishing sharp estimates regarding the rank distribution of symmetric random
$\{\pm 1\}$
-matrices over
$\mathbb{F}_p$
for primes
$2 < p \leq \exp(O(n^{1/4}))$
. Previously, such estimates were available only for
$p = o(n^{1/8})$
. At the heart of our proof is a way to combine multiple inverse Littlewood–Offord-type results to control the contribution to singularity-type events of vectors in
$\mathbb{F}_p^{n}$
with anticoncentration at least
$1/p + \Omega(1/p^2)$
. Previously, inverse Littlewood–Offord-type results only allowed control over vectors with anticoncentration at least
$C/p$
for some large constant
$C > 1$
.
We obtain some improved results for the exponential sum
$\sum _{x<n\leq 2x}\Lambda (n)e(\alpha k n^{\theta })$
with
$\theta \in (0,5/12),$
where
$\Lambda (n)$
is the von Mangoldt function. Such exponential sums have relations with the so-called quasi-Riemann hypothesis and were considered by Murty and Srinivas [‘On the uniform distribution of certain sequences’, Ramanujan J.7 (2003), 185–192].
We prove that the Riemann hypothesis is equivalent to the condition
$\int _{2}^x\left (\pi (t)-\operatorname {\textrm {li}}(t)\right )\textrm {d}t<0$
for all
$x>2$
. Here,
$\pi (t)$
is the prime-counting function and
$\operatorname {\textrm {li}}(t)$
is the logarithmic integral. This makes explicit a claim of Pintz. Moreover, we prove an analogous result for the Chebyshev function
$\theta (t)$
and discuss the extent to which one can make related claims unconditionally.
In this paper, we study lower-order terms of the one-level density of low-lying zeros of quadratic Hecke L-functions in the Gaussian field. Assuming the generalized Riemann hypothesis, our result is valid for even test functions whose Fourier transforms are supported in
$(-2, 2)$
. Moreover, we apply the ratios conjecture of L-functions to derive these lower-order terms as well. Up to the first lower-order term, we show that our results are consistent with each other when the Fourier transforms of the test functions are supported in
$(-2, 2)$
.