We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study lower bounds of a general family of L-functions on the
$1$
-line. More precisely, we show that for any
$F(s)$
in this family, there exist arbitrarily large t such that
$F(1+it)\geq e^{\gamma _F} (\log _2 t + \log _3 t)^m + O(1)$
, where m is the order of the pole of
$F(s)$
at
$s=1$
. This is a generalisation of the result of Aistleitner, Munsch and Mahatab [‘Extreme values of the Riemann zeta function on the
$1$
-line’, Int. Math. Res. Not. IMRN2019(22) (2019), 6924–6932]. As a consequence, we get lower bounds for large values of Dedekind zeta-functions and Rankin-Selberg L-functions of the type
$L(s,f\times f)$
on the
$1$
-line.
We prove that, for any small $\varepsilon > 0$, the number of irrationals among the following odd zeta values: $\zeta (3),\zeta (5),\zeta (7),\ldots ,\zeta (s)$ is at least $( c_0 - \varepsilon )({s^{1/2}}/{(\log s)^{1/2}})$, provided $s$ is a sufficiently large odd integer with respect to $\varepsilon$. The constant $c_0 = 1.192507\ldots$ can be expressed in closed form. Our work improves the lower bound $2^{(1-\varepsilon )({\log s}/{\log \log s})}$ of the previous work of Fischler, Sprang and Zudilin. We follow the same strategy of Fischler, Sprang and Zudilin. The main new ingredient is an asymptotically optimal design for the zeros of the auxiliary rational functions, which relates to the inverse totient problem.
We prove a functional equation for a vector valued real analytic Eisenstein series transforming with the Weil representation of $\operatorname{Sp}(n,\mathbb{Z})$ on $\mathbb{C}[(L^{\prime }/L)^{n}]$. By relating such an Eisenstein series with a real analytic Jacobi Eisenstein series of degree $n$, a functional equation for such an Eisenstein series is proved. Employing a doubling method for Jacobi forms of higher degree established by Arakawa, we transfer the aforementioned functional equation to a zeta function defined by the eigenvalues of a Jacobi eigenform. Finally, we obtain the analytic continuation and a functional equation of the standard $L$-function attached to a Jacobi eigenform, which was already proved by Murase, however in a different way.
In order to study integers with few prime factors, the average of $\unicode[STIX]{x1D6EC}_{k}=\unicode[STIX]{x1D707}\ast \log ^{k}$ has been a central object of research. One of the more important cases, $k=2$, was considered by Selberg [‘An elementary proof of the prime-number theorem’, Ann. of Math. (2)50 (1949), 305–313]. For $k\geq 2$, it was studied by Bombieri [‘The asymptotic sieve’, Rend. Accad. Naz. XL (5)1(2) (1975/76), 243–269; (1977)] and later by Friedlander and Iwaniec [‘On Bombieri’s asymptotic sieve’, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4)5(4) (1978), 719–756], as an application of the asymptotic sieve.
Let $\unicode[STIX]{x1D6EC}_{j,k}:=\unicode[STIX]{x1D707}_{j}\ast \log ^{k}$, where $\unicode[STIX]{x1D707}_{j}$ denotes the Liouville function for $(j+1)$-free integers, and $0$ otherwise. In this paper we evaluate the average value of $\unicode[STIX]{x1D6EC}_{j,k}$ in a residue class $n\equiv a\text{ mod }q$, $(a,q)=1$, uniformly on $q$. When $j\geq 2$, we find that the average value in a residue class differs by a constant factor from the expected value. Moreover, an explicit formula of Weil type for $\unicode[STIX]{x1D6EC}_{k}(n)$ involving the zeros of the Riemann zeta function is derived for an arbitrary compactly supported ${\mathcal{C}}^{2}$ function.
where
$\chi $
is a primitive Dirichlet character and F belongs to a class of L-functions. The class we consider includes L-functions associated with automorphic representations of
$GL(n)$
over
${\mathbb {Q}}$
.
We introduce a new family of real-analytic modular forms on the upper-half plane. They are arguably the simplest class of ‘mixed’ versions of modular forms of level one and are constructed out of real and imaginary parts of iterated integrals of holomorphic Eisenstein series. They form an algebra of functions satisfying many properties analogous to classical holomorphic modular forms. In particular, they admit expansions in $q,\overline{q}$ and $\log |q|$ involving only rational numbers and single-valued multiple zeta values. The first nontrivial functions in this class are real-analytic Eisenstein series.
Motohashi established an explicit identity between the fourth moment of the Riemann zeta function weighted by some test function and a spectral cubic moment of automorphic $L$-functions. By an entirely different method, we prove a generalization of this formula to a fourth moment of Dirichlet $L$-functions modulo $q$ weighted by a non-archimedean test function. This establishes a new reciprocity formula. As an application, we obtain sharp upper bounds for the fourth moment twisted by the square of a Dirichlet polynomial of length $q^{1/4}$. An auxiliary result of independent interest is a sharp upper bound for a certain sixth moment for automorphic $L$-functions, which we also use to improve the best known subconvexity bounds for automorphic $L$-functions in the level aspect.
Newman showed that there exists a finite constant $\unicode[STIX]{x1D6EC}$ (the de Bruijn–Newman constant) such that the zeros of $H_{t}$ are all real precisely when $t\geqslant \unicode[STIX]{x1D6EC}$. The Riemann hypothesis is equivalent to the assertion $\unicode[STIX]{x1D6EC}\leqslant 0$, and Newman conjectured the complementary bound $\unicode[STIX]{x1D6EC}\geqslant 0$. In this paper, we establish Newman’s conjecture. The argument proceeds by assuming for contradiction that $\unicode[STIX]{x1D6EC}<0$ and then analyzing the dynamics of zeros of $H_{t}$ (building on the work of Csordas, Smith and Varga) to obtain increasingly strong control on the zeros of $H_{t}$ in the range $\unicode[STIX]{x1D6EC}<t\leqslant 0$, until one establishes that the zeros of $H_{0}$ are in local equilibrium, in the sense that they locally behave (on average) as if they were equally spaced in an arithmetic progression, with gaps staying close to the global average gap size. But this latter claim is inconsistent with the known results about the local distribution of zeros of the Riemann zeta function, such as the pair correlation estimates of Montgomery.
We prove that sums of length about $q^{3/2}$ of Hecke eigenvalues of automorphic forms on $\operatorname{SL}_{3}(\mathbf{Z})$ do not correlate with $q$-periodic functions with bounded Fourier transform. This generalizes the earlier results of Munshi and Holowinsky–Nelson, corresponding to multiplicative Dirichlet characters, and applies, in particular, to trace functions of small conductor modulo primes.
We generalize current known distribution results on Shanks–Rényi prime number races to the case where arbitrarily many residue classes are involved. Our method handles both the classical case that goes back to Chebyshev and function field analogues developed in the recent years. More precisely, let $\unicode[STIX]{x1D70B}(x;q,a)$ be the number of primes up to $x$ that are congruent to $a$ modulo $q$. For a fixed integer $q$ and distinct invertible congruence classes $a_{0},a_{1},\ldots ,a_{D}$, assuming the generalized Riemann Hypothesis and a weak version of the linear independence hypothesis, we show that the set of real $x$ for which the inequalities $\unicode[STIX]{x1D70B}(x;q,a_{0})>\unicode[STIX]{x1D70B}(x;q,a_{1})>\cdots >\unicode[STIX]{x1D70B}(x;q,a_{D})$ are simultaneously satisfied admits a logarithmic density.
Higher dimensional analogues of the modular group $\mathit{PSL}(2,\mathbb{Z})$ are closely related to hyperbolic reflection groups and Coxeter polyhedra with big symmetry groups. In this context, we develop a theory and dissection properties of ideal hyperbolic $k$-rectified regular polyhedra, which is of independent interest. As an application, we can identify the covolumes of the quaternionic modular groups with certain explicit rational multiples of the Riemann zeta value $\unicode[STIX]{x1D701}(3)$.
Ihara et al. proved the derivation relation for multiple zeta values. The first-named author obtained its counterpart for finite multiple zeta values in ${\mathcal{A}}$. In this paper, we present its generalization in $\widehat{{\mathcal{A}}}$.
We give a conjecture for the moments of the Dedekind zeta function of a Galois extension. This is achieved through the hybrid product method of Gonek, Hughes and Keating. The moments of the product over primes are evaluated using a theorem of Montgomery and Vaughan, whilst the moments of the product over zeros are conjectured using a heuristic method involving random matrix theory. The asymptotic formula of the latter is then proved for quadratic extensions in the lowest order case. We are also able to reproduce our moments conjecture in the case of quadratic extensions by using a modified version of the moments recipe of Conrey et al. Generalising our methods, we then provide a conjecture for moments of non-primitive L-functions, which is supported by some calculations based on Selberg’s conjectures.
One of the approaches to the Riemann Hypothesis is the Nyman–Beurling criterion. Cotangent sums play a significant role in this criterion. Here we investigate the values of these cotangent sums for various shifts of the argument.
In this paper we prove some one-level density results for the low-lying zeros of families of quadratic and quartic Hecke $L$-functions of the Gaussian field. As corollaries, we deduce that at least 94.27% and 5%, respectively, of the members of the quadratic family and the quartic family do not vanish at the central point.
We study various families of Artin $L$-functions attached to geometric parametrizations of number fields. In each case we find the Sato–Tate measure of the family and determine the symmetry type of the distribution of the low-lying zeros.
We prove a new linear relation for multiple zeta values. This is a natural generalisation of the restricted sum formula proved by Eie, Liaw and Ong. We also present an analogous result for finite multiple zeta values.
Four classes of multiple series, which can be considered as multifold counterparts of four classical summation formulae related to the Riemann zeta series, are evaluated in closed form.
We prove that the complete $L$-function associated to any cuspidal automorphic representation of $\operatorname{GL}_{2}(\mathbb{A}_{\mathbb{Q}})$ has infinitely many simple zeros.
Building upon ideas of the second and third authors, we prove that at least $2^{(1-\unicode[STIX]{x1D700})(\log s)/(\text{log}\log s)}$ values of the Riemann zeta function at odd integers between 3 and $s$ are irrational, where $\unicode[STIX]{x1D700}$ is any positive real number and $s$ is large enough in terms of $\unicode[STIX]{x1D700}$. This lower bound is asymptotically larger than any power of $\log s$; it improves on the bound $(1-\unicode[STIX]{x1D700})(\log s)/(1+\log 2)$ that follows from the Ball–Rivoal theorem. The proof is based on construction of several linear forms in odd zeta values with related coefficients.