We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove the reciprocity law for the twisted second moments of Dirichlet $L$-functions over rational function fields, corresponding to
two irreducible polynomials. This formula is the analogue of the formulas
for Dirichlet $L$-functions over $\mathbb{Q}$ obtained by Conrey [‘The mean-square of Dirichlet $L$-functions’, arXiv:0708.2699 [math.NT] (2007)] and Young [‘The reciprocity law
for the twisted second moment of Dirichlet $L$-functions’, Forum Math.
23(6) (2011), 1323–1337].
Assuming a conjecture on distinct zeros of Dirichlet $L$-functions we get asymptotic results on the average number of representations of an integer as the sum of two primes in arithmetic progression. On the other hand the existence of good error terms gives information on the location of zeros of $L$-functions. Similar results are obtained for an integer in a congruence class expressed as the sum of two primes.
We construct a random model to study the distribution of class numbers in special families of real quadratic fields ${\open Q}(\sqrt d )$ arising from continued fractions. These families are obtained by considering continued fraction expansions of the form $\sqrt {D(n)} = [f(n),\overline {u_1,u_2, \ldots ,u_{s-1} ,2f(n)]} $ with fixed coefficients u1, …, us−1 and generalize well-known families such as Chowla's 4n2 + 1, for which analogous results were recently proved by Dahl and Lamzouri [‘The distribution of class numbers in a special family of real quadratic fields’, Trans. Amer. Math. Soc. (2018), 6331–6356].
Putnam [‘On the non-periodicity of the zeros of the Riemann zeta-function’,
Amer. J. Math.76 (1954), 97–99] proved that
the sequence of consecutive positive zeros of $\unicode[STIX]{x1D701}(\frac{1}{2}+it)$ does not contain any infinite arithmetic progression. We
extend this result to a certain class of zeta functions.
In this paper we follow the approach of Bertrand–Beukers (and of Bertrand’s later work), based on differential Galois theory, to prove a very general version of Shidlovsky’s lemma that applies to Padé-approximation problems at several points, both at functional and numerical levels (that is, before and after evaluating at a specific point). This allows us to obtain a new proof of the Ball–Rivoal theorem on irrationality of infinitely many values of the Riemann zeta function at odd integers, inspired by the proof of the Siegel–Shidlovsky theorem on values of $E$-functions: Shidlovsky’s lemma is used to replace Nesterenko’s linear independence criterion with Siegel’s, so that no lower bound is needed on the linear forms in zeta values. The same strategy provides a new proof, and a refinement, of Nishimoto’s theorem on values of $L$-functions of Dirichlet characters.
This paper [1], which was published online on 1 June 2011, has been retracted by agreement between the authors, the journal’s Editor-in-Chief Derek Holt, the London Mathematical Society and Cambridge University Press. The retraction was agreed to prevent other authors from using incorrect mathematical results. (In this paper, we compute and verify the positivity of the Li coefficients for the Dirichlet $L$-functions using an arithmetic formula established in Omar and Mazhouda, J. Number Theory 125 (2007) no. 1, 50–58; J. Number Theory 130 (2010) no. 4, 1109–1114. Furthermore, we formulate a criterion for the partial Riemann hypothesis and we provide some numerical evidence for it using new formulas for the Li coefficients.)
Subconvexity bounds on the critical line are proved for general Epstein zeta-functions of $k$-ary quadratic forms. This is related to sup-norm bounds for unitary Eisenstein series on $\text{GL}(k)$ associated with the maximal parabolic of type $(k-1,1)$, and the exact sup-norm exponent is determined to be $(k-2)/8$ for $k\geqslant 4$. In particular, if $k$ is odd, this exponent is not in $\frac{1}{4}\mathbb{Z}$, which is relevant in the context of Sarnak’s purity conjecture and shows that it can in general not directly be generalized to Eisenstein series.
In [31] we defined a regularized analytic torsion for quotients of the symmetric space $\operatorname{SL}(n,\mathbb{R})/\operatorname{SO}(n)$ by arithmetic lattices. In this paper we study the limiting behavior of the analytic torsion as the lattices run through sequences of congruence subgroups of a fixed arithmetic subgroup. Our main result states that for principal congruence subgroups and strongly acyclic flat bundles, the logarithm of the analytic torsion, divided by the index of the subgroup, converges to the $L^{2}$-analytic torsion.
Let $L(s,\unicode[STIX]{x1D712})$ be the Dirichlet $L$-function associated to a non-principal primitive character $\unicode[STIX]{x1D712}$ modulo $q$ with $3\leqslant q\leqslant 400\,000$. We prove a new explicit zero-free region for $L(s,\unicode[STIX]{x1D712})$: $L(s,\unicode[STIX]{x1D712})$ does not vanish in the region $\mathfrak{Re}\,s\geqslant 1-1/(R\log (q\max (1,|\mathfrak{Im}\,s|)))$ with $R=5.60$. This improves a result of McCurley where $9.65$ was shown to be an admissible value for $R$.
We prove asymptotic formulas for the number of integers at most $x$ that can be written as the product of $k~({\geqslant}2)$ distinct primes $p_{1}\cdots p_{k}$ with each prime factor in an arithmetic progression $p_{j}\equiv a_{j}\hspace{0.2em}{\rm mod}\hspace{0.2em}q$, $(a_{j},q)=1$$(q\geqslant 3,1\leqslant j\leqslant k)$. For any $A>0$, our result is uniform for $2\leqslant k\leqslant A\log \log x$. Moreover, we show that there are large biases toward certain arithmetic progressions $(a_{1}\hspace{0.2em}{\rm mod}\hspace{0.2em}q,\ldots ,a_{k}\hspace{0.2em}{\rm mod}\hspace{0.2em}q)$, and such biases have connections with Mertens’ theorem and the least prime in arithmetic progressions.
While the distribution of the non-trivial zeros of the Riemann zeta function constitutes a central theme in Mathematics, nothing is known about the algebraic nature of these non-trivial zeros. In this article, we study the transcendental nature of sums of the form
where the sum is over the non-trivial zeros $\unicode[STIX]{x1D70C}$ of $\unicode[STIX]{x1D701}(s)$, $R(x)\in \overline{\mathbb{Q}}(x)$ is a rational function over algebraic numbers and $x>0$ is a real algebraic number. In particular, we show that the function
has infinitely many zeros in $(1,\infty )$, at most one of which is algebraic. The transcendence tools required for studying $f(x)$ in the range $x<1$ seem to be different from those in the range $x>1$. For $x<1$, we have the following non-vanishing theorem: If for an integer $d\geqslant 1$, $f(\unicode[STIX]{x1D70B}\sqrt{d}x)$ has a rational zero in$(0,1/\unicode[STIX]{x1D70B}\sqrt{d})$, then
where $\unicode[STIX]{x1D712}_{-d}$ is the quadratic character associated with the imaginary quadratic field $K:=\mathbb{Q}(\sqrt{-d})$. Finally, we consider analogous questions for elements in the Selberg class. Our proofs rest on results from analytic as well as transcendental number theory.
We investigate the approximation of quadratic Dirichlet $L$-functions over function fields by truncations of their Euler products. We first establish representations for such $L$-functions as products over prime polynomials times products over their zeros. This is the hybrid formula in function fields. We then prove that partial Euler products are good approximations of an $L$-function away from its zeros and that, when the length of the product tends to infinity, we recover the original $L$-function. We also obtain explicit expressions for the arguments of quadratic Dirichlet $L$-functions over function fields and for the arguments of their partial Euler products. In the second part of the paper we construct, for each quadratic Dirichlet $L$-function over a function field, an auxiliary function based on the approximate functional equation that equals the $L$-function on the critical line. We also construct a parametrized family of approximations of these auxiliary functions and prove that the Riemann hypothesis holds for them and that their zeros are related to those of the associated $L$-function. Finally, we estimate the counting function for the zeros of this family of approximations, show that these zeros cluster near those of the associated $L$-function, and that, when the parameter is not too large, almost all the zeros of the approximations are simple.
We study a family of mixed Tate motives over $\mathbb{Z}$ whose periods are linear forms in the zeta values $\unicode[STIX]{x1D701}(n)$. They naturally include the Beukers–Rhin–Viola integrals for $\unicode[STIX]{x1D701}(2)$ and the Ball–Rivoal linear forms in odd zeta values. We give a general integral formula for the coefficients of the linear forms and a geometric interpretation of the vanishing of the coefficients of a given parity. The main underlying result is a geometric construction of a minimal ind-object in the category of mixed Tate motives over $\mathbb{Z}$ which contains all the non-trivial extensions between simple objects. In a joint appendix with Don Zagier, we prove the compatibility between the structure of the motives considered here and the representations of their periods as sums of series.
Inspired by the recent work of M. Nakasuji, O. Phuksuwan and Y. Yamasaki, we combine interpolated multiple zeta values and Schur multiple zeta values into one object, which we call interpolated Schur multiple zeta values. Our main result will be a Jacobi–Trudi formula for a certain class of these new objects. This generalizes an analogous result for Schur multiple zeta values and implies algebraic relations between interpolated multiple zeta values.
We construct and study a certain zeta function which interpolates multi-poly-Bernoulli numbers at nonpositive integers and whose values at positive integers are linear combinations of multiple zeta values. This function can be regarded as the one to be paired up with the $\unicode[STIX]{x1D709}$-function defined by Arakawa and Kaneko. We show that both are closely related to the multiple zeta functions. Further we define multi-indexed poly-Bernoulli numbers, and generalize the duality formulas for poly-Bernoulli numbers by introducing more general zeta functions.
We study the multiple Eisenstein series introduced by Gangl, Kaneko and Zagier. We give a proof of (restricted) finite double shuffle relations for multiple Eisenstein series by revealing an explicit connection between the Fourier expansion of multiple Eisenstein series and the Goncharov co-product on Hopf algebras of iterated integrals.
Conditionally on the generalized Lindelöf hypothesis, we obtain an asymptotic for the fourth moment of Hecke–Maass cusp forms of large Laplacian eigenvalue for the full modular group. This lends support to the random wave conjecture.
We study the $1$-level density of low-lying zeros of Dirichlet $L$-functions attached to real primitive characters of conductor at most $X$. Under the generalized Riemann hypothesis, we give an asymptotic expansion of this quantity in descending powers of $\log X$, which is valid when the support of the Fourier transform of the corresponding even test function $\unicode[STIX]{x1D719}$ is contained in $(-2,2)$. We uncover a phase transition when the supremum $\unicode[STIX]{x1D70E}$ of the support of $\widehat{\unicode[STIX]{x1D719}}$ reaches $1$, both in the main term and in the lower order terms. A new lower order term appearing at $\unicode[STIX]{x1D70E}=1$ involves the quantity $\widehat{\unicode[STIX]{x1D719}}(1)$, and is analogous to a lower order term which was isolated by Rudnick in the function field case.
This paper concerns the problem of algebraic differential independence of the gamma function and ${\mathcal{L}}$-functions in the extended Selberg class. We prove that the two kinds of functions cannot satisfy a class of algebraic differential equations with functional coefficients that are linked to the zeros of the ${\mathcal{L}}$-function in a domain $D:=\{z:0<\text{Re}\,z<\unicode[STIX]{x1D70E}_{0}\}$ for a positive constant $\unicode[STIX]{x1D70E}_{0}$.