To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper we present a new family of identities for multiple harmonic sums which generalize a recent result of Hessami Pilehrood et al [Trans. Amer. Math. Soc. (to appear)]. We then apply it to obtain a family of identities relating multiple zeta star values to alternating Euler sums. In such a typical identity the entries of the multiple zeta star values consist of blocks of arbitrarily long 2-strings separated by positive integers greater than two while the largest depth of the alternating Euler sums depends only on the number of 2-string blocks but not on their lengths.
Let $q$ be a prime and $- D\lt - 4$ be an odd fundamental discriminant such that $q$ splits in $ \mathbb{Q} ( \sqrt{- D} )$. For $f$ a weight-zero Hecke–Maass newform of level $q$ and ${\Theta }_{\chi } $ the weight-one theta series of level $D$ corresponding to an ideal class group character $\chi $ of $ \mathbb{Q} ( \sqrt{- D} )$, we establish a hybrid subconvexity bound for $L(f\times {\Theta }_{\chi } , s)$ at $s= 1/ 2$ when $q\asymp {D}^{\eta } $ for $0\lt \eta \lt 1$. With this circle of ideas, we show that the Heegner points of level $q$ and discriminant $D$ become equidistributed, in a natural sense, as $q, D\rightarrow \infty $ for $q\leq {D}^{1/ 20- \varepsilon } $. Our approach to these problems is connected to estimating the ${L}^{2} $-restriction norm of a Maass form of large level $q$ when restricted to the collection of Heegner points. We furthermore establish bounds for quadratic twists of Hecke–Maass $L$-functions with simultaneously large level and large quadratic twist, and hybrid bounds for quadratic Dirichlet $L$-functions in certain ranges.
We investigate the intersections of the curve $ \mathbb{R} \ni t\mapsto \zeta (\frac{1}{2} + \mathrm{i} t)$ with the real axis. We show unconditionally that the zeta function takes arbitrarily large positive and negative values on the critical line.
It is known that $\zeta (1+ it)\ll \mathop{(\log t)}\nolimits ^{2/ 3} $ when $t\gg 1$. This paper provides a new explicit estimate $\vert \zeta (1+ it)\vert \leq \frac{3}{4} \log t$, for $t\geq 3$. This gives the best upper bound on $\vert \zeta (1+ it)\vert $ for $t\leq 1{0}^{2\cdot 1{0}^{5} } $.
Building on the concept of pretentious multiplicative functions, we give a new and largely elementary proof of the best result known on the counting function of primes in arithmetic progressions.
We characterize nonempty open subsets of the complex plane where the sum $\zeta (s, \alpha )+ {e}^{\pm i\pi s} \hspace{0.167em} \zeta (s, 1- \alpha )$ of Hurwitz zeta functions has no zeros in $s$ for all $0\leq \alpha \leq 1$. This problem is motivated by the construction of fundamental cardinal splines of complex order $s$.
Let $K$ be a number field of degree $n$, and let $d_K$ be its discriminant. Then, under the Artin conjecture, the generalized Riemann hypothesis and a certain zero-density hypothesis, we show that the upper and lower bounds of the logarithmic derivatives of Artin $L$-functions attached to $K$ at $s=1$ are $\log \log |d_K|$ and $-(n-1) \log \log |d_K|$, respectively. Unconditionally, we show that there are infinitely many number fields with the extreme logarithmic derivatives; they are families of number fields whose Galois closures have the Galois group $C_n$ for $n=2,3,4,6$, $D_n$ for $n=3,4,5$, $S_4$ or $A_5$.
Using the cohomology theory of Dwork, as developed by Adolphson and Sperber, we exhibit a deterministic algorithm to compute the zeta function of a nondegenerate hypersurface defined over a finite field. This algorithm is particularly well suited to work with polynomials in small characteristic that have few monomials (relative to their dimension). Our method covers toric, affine, and projective hypersurfaces, and also can be used to compute the L-function of an exponential sum.
In this paper we investigate the zeros of the Estermann zeta function $E(s; k/ \ell , \alpha )= { \mathop{\sum }\nolimits}_{n= 1}^{\infty } {\sigma }_{\alpha } (n) \exp (2\pi ink/ \ell ){n}^{- s} $ as a function of a complex variable $s$, where $k$ and $\ell $ are coprime integers and ${\sigma }_{\alpha } (n)= {\mathop{\sum }\nolimits}_{d\vert n} {d}^{\alpha } $ is the generalized divisor function with a fixed complex number $\alpha $. In particular, we study the question on how the zeros of $E(s; k/ \ell , \alpha )$ depend on the parameters $k/ \ell $ and $\alpha $. It turns out that for some zeros there is a continuous dependency whereas for other zeros there is not.
We obtain lower bounds of the correct order of magnitude for the 2kth moment of the Riemann zeta function for all k≥1. Previously such lower bounds were known only for rational values of k, with the bounds depending on the height of the rational number k. Our new bounds are continuous in k, and thus extend also to the case when k is irrational. The method is a refinement of an approach of Rudnick and Soundararajan, and applies also to moments of L-functions in families.
We investigate the behaviour of the function $L_{\alpha }(x) = \sum _{n\leq x}\lambda (n)/n^{\alpha }$, where $\lambda (n)$ is the Liouville function and $\alpha $ is a real parameter. The case where $\alpha =0$ was investigated by Pólya; the case $\alpha =1$, by Turán. The question of the existence of sign changes in both of these cases is related to the Riemann hypothesis. Using both analytic and computational methods, we investigate similar problems for the more general family $L_{\alpha }(x)$, where $0\leq \alpha \leq 1$, and their relationship to the Riemann hypothesis and other properties of the zeros of the Riemann zeta function. The case where $\alpha =1/2$is of particular interest.
For an abelian surface A over a number field k, we study the limiting distribution of the normalized Euler factors of the L-function of A. This distribution is expected to correspond to taking characteristic polynomials of a uniform random matrix in some closed subgroup of USp(4); this Sato–Tate group may be obtained from the Galois action on any Tate module of A. We show that the Sato–Tate group is limited to a particular list of 55 groups up to conjugacy. We then classify A according to the Galois module structure on the ℝ-algebra generated by endomorphisms of (the Galois type), and establish a matching with the classification of Sato–Tate groups; this shows that there are at most 52 groups up to conjugacy which occur as Sato–Tate groups for suitable A and k, of which 34 can occur for k=ℚ. Finally, we present examples of Jacobians of hyperelliptic curves exhibiting each Galois type (over ℚ whenever possible), and observe numerical agreement with the expected Sato–Tate distribution by comparing moment statistics.
It is well known that Hurwitz zeta-functions with algebraically independent parameters over the field of rational numbers are universal in the sense that their shifts approximate simultaneously any collection of analytic functions. In this paper we introduce some classes of universal composite functions of a collection of Hurwitz zeta-functions.
We study various Dirichlet series of the form ∑n≥1f(πnα)/ns, where α is an irrational number and f(x) is a trigonometric function like cot(x), 1/sin(x) or 1/sin2(x). The convergence is slow and strongly depends on the Diophantine properties of α. We provide necessary and sufficient convergence conditions using the continued fraction of α. We also show that any one of our series is equal to a related series, which converges much faster, defined in term of iterations of the continued fraction operator α↦{1/α}.
In this paper we present new explicit simultaneous rational approximations which converge subexponentially to the values of the Bell polynomials at the points where m=1,2,…,a, a∈ℕ, γ is Euler’s constant and ζ is the Riemann zeta function.
In this paper, we consider certain double series analogous to Tornheim’s double series and real analytic Eisenstein series. By computing double integrals in two ways, we express the double series as a sum of products of polylogarithms. The technique generalises one given by Kanemitsu, Tanigawa and Yoshimoto. Evaluating the double series at particular points gives new evaluations for certain double series in terms of values of the Riemann zeta function and the dilogarithm which are analogues of formulas of Mordell and Goncharov.
We study the Witten multiple zeta function associated with the Lie algebra . Our main result shows that its special values at nonnegative integers are always expressible by alternating Euler sums. More precisely, every such special value of weight w at least 2 is a finite ℚ-linear combination of alternating Euler sums of weight w and depth at most 2, except when the only nonzero argument is one of the two last variables, in which case ζ(w−1) is needed.
In Gun and Ramakrishnan [‘On special values of certain Dirichlet L-functions’, Ramanujan J.15 (2008), 275–280], we gave expressions for the special values of certain Dirichlet L-function in terms of finite sums involving Jacobi symbols. In this note we extend our earlier results by giving similar expressions for two more special values of Dirichlet L-functions, namely L(−1,χm) and L(−2,χ−m′), where m,m′ are square-free integers with m≡1 mod 8 and m′≡3 mod 8 and χD is the Kronecker symbol . As a consequence, using the identities of Cohen [‘Sums involving the values at negative integers of L-functions of quadratic characters’, Math. Ann.217 (1975), 271–285], we also express the finite sums with Jacobi symbols in terms of sums involving divisor functions. Finally, we observe that the proof of Theorem 1.2 in Gun and Ramakrishnan (as above) is a direct consequence of Equation (24) in Gun, Manickam and Ramakrishnan [‘A canonical subspace of modular forms of half-integral weight’, Math. Ann.347 (2010), 899–916].