We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We generalise a result of Hilbert which asserts that the Riemann zeta-function ${\it\zeta}(s)$ is hypertranscendental over $\mathbb{C}(s)$. Let ${\it\pi}$ be any irreducible cuspidal automorphic representation of $\text{GL}_{m}(\mathbb{A}_{\mathbb{Q}})$ with unitary central character. We establish a certain type of functional difference–differential independence for the associated $L$-function $L(s,{\it\pi})$. This result implies algebraic difference–differential independence of $L(s,{\it\pi})$ over $\mathbb{C}(s)$ (and more strongly, over a certain field ${\mathcal{F}}_{s}$ which contains $\mathbb{C}(s)$). In particular, $L(s,{\it\pi})$ is hypertranscendental over $\mathbb{C}(s)$. We also extend a result of Ostrowski on the hypertranscendence of ordinary Dirichlet series.
We give three identities involving multiple zeta values of height one and of maximal height: an explicit formula for the height-one multiple zeta values, a regularised sum formula and a sum formula for the multiple zeta values of maximal height.
We prove a subconvexity bound for the central value $L(\frac{1}{2},{\it\chi})$ of a Dirichlet $L$-function of a character ${\it\chi}$ to a prime power modulus $q=p^{n}$ of the form $L(\frac{1}{2},{\it\chi})\ll p^{r}q^{{\it\theta}+{\it\epsilon}}$ with a fixed $r$ and ${\it\theta}\approx 0.1645<\frac{1}{6}$, breaking the long-standing Weyl exponent barrier. In fact, we develop a general new theory of estimation of short exponential sums involving $p$-adically analytic phases, which can be naturally seen as a $p$-adic analogue of the method of exponent pairs. This new method is presented in a ready-to-use form and applies to a wide class of well-behaved phases including many that arise from a stationary phase analysis of hyper-Kloosterman and other complete exponential sums.
In this paper, by using the theory of reproducing kernel Hilbert spaces and the pair correlation formula constructed by Chandee et al. [‘Simple zeros of primitive Dirichlet $L$-functions and the asymptotic large sieve’, Q. J. Math.65(1) (2014), 63–87], we prove that at least 93.22% of low-lying zeros of primitive Dirichlet $L$-functions are simple in a proper sense, under the assumption of the generalised Riemann hypothesis.
In this article we discuss three types of mean values of the Euler double zeta-function. To get the results, we introduce three approximate formulas for this function.
We study analytic properties of certain infinite products of cyclotomic polynomials that generalise some products introduced by Mahler. We characterise those that have the unit circle as a natural boundary and use associated Dirichlet series to obtain their asymptotic behaviour near roots of unity.
We obtain uniqueness theorems for L-functions in the extended Selberg class when the functions share values in a finite set and share values weighted by multiplicities.
We study a subtle inequity in the distribution of unnormalized differences between imaginary parts of zeros of the Riemann zeta function, which was observed by a number of authors. We establish a precise measure which explains the phenomenon, that the location of each Riemann zero is encoded in the distribution of large Riemann zeros. We also extend these results to zeros of more general $L$-functions. In particular, we show how the rank of an elliptic curve over $\mathbb{Q}$ is encoded in the sequences of zeros of other$L$-functions, not only the one associated to the curve.
The values at 1 of single-valued multiple polylogarithms span a certain subalgebra of multiple zeta values. The properties of this algebra are studied from the point of view of motivic periods.
We study the values of the zeta-function of the root system of type G2 at positive integer points. In our previous work we considered the case when all integers are even, but in the present paper we prove several theorems which include the situation when some of the integers are odd. The underlying reason why we may treat such cases, including odd integers, is also discussed.
We present an efficient algorithm to compute the Hasse–Witt matrix of a hyperelliptic curve $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}C/\mathbb{Q}$ modulo all primes of good reduction up to a given bound $N$, based on the average polynomial-time algorithm recently proposed by the first author. An implementation for hyperelliptic curves of genus 2 and 3 is more than an order of magnitude faster than alternative methods for $N = 2^{26}$.
We describe algorithms for computing central values of twists of $L$-functions associated to Hilbert modular forms, carry out such computations for a number of examples, and compare the results of these computations to some heuristics and predictions from random matrix theory.
In this paper we present a new family of identities for multiple harmonic sums which generalize a recent result of Hessami Pilehrood et al [Trans. Amer. Math. Soc. (to appear)]. We then apply it to obtain a family of identities relating multiple zeta star values to alternating Euler sums. In such a typical identity the entries of the multiple zeta star values consist of blocks of arbitrarily long 2-strings separated by positive integers greater than two while the largest depth of the alternating Euler sums depends only on the number of 2-string blocks but not on their lengths.
Let $q$ be a prime and $- D\lt - 4$ be an odd fundamental discriminant such that $q$ splits in $ \mathbb{Q} ( \sqrt{- D} )$. For $f$ a weight-zero Hecke–Maass newform of level $q$ and ${\Theta }_{\chi } $ the weight-one theta series of level $D$ corresponding to an ideal class group character $\chi $ of $ \mathbb{Q} ( \sqrt{- D} )$, we establish a hybrid subconvexity bound for $L(f\times {\Theta }_{\chi } , s)$ at $s= 1/ 2$ when $q\asymp {D}^{\eta } $ for $0\lt \eta \lt 1$. With this circle of ideas, we show that the Heegner points of level $q$ and discriminant $D$ become equidistributed, in a natural sense, as $q, D\rightarrow \infty $ for $q\leq {D}^{1/ 20- \varepsilon } $. Our approach to these problems is connected to estimating the ${L}^{2} $-restriction norm of a Maass form of large level $q$ when restricted to the collection of Heegner points. We furthermore establish bounds for quadratic twists of Hecke–Maass $L$-functions with simultaneously large level and large quadratic twist, and hybrid bounds for quadratic Dirichlet $L$-functions in certain ranges.
We investigate the intersections of the curve $ \mathbb{R} \ni t\mapsto \zeta (\frac{1}{2} + \mathrm{i} t)$ with the real axis. We show unconditionally that the zeta function takes arbitrarily large positive and negative values on the critical line.
It is known that $\zeta (1+ it)\ll \mathop{(\log t)}\nolimits ^{2/ 3} $ when $t\gg 1$. This paper provides a new explicit estimate $\vert \zeta (1+ it)\vert \leq \frac{3}{4} \log t$, for $t\geq 3$. This gives the best upper bound on $\vert \zeta (1+ it)\vert $ for $t\leq 1{0}^{2\cdot 1{0}^{5} } $.
Building on the concept of pretentious multiplicative functions, we give a new and largely elementary proof of the best result known on the counting function of primes in arithmetic progressions.
We characterize nonempty open subsets of the complex plane where the sum $\zeta (s, \alpha )+ {e}^{\pm i\pi s} \hspace{0.167em} \zeta (s, 1- \alpha )$ of Hurwitz zeta functions has no zeros in $s$ for all $0\leq \alpha \leq 1$. This problem is motivated by the construction of fundamental cardinal splines of complex order $s$.
Let $K$ be a number field of degree $n$, and let $d_K$ be its discriminant. Then, under the Artin conjecture, the generalized Riemann hypothesis and a certain zero-density hypothesis, we show that the upper and lower bounds of the logarithmic derivatives of Artin $L$-functions attached to $K$ at $s=1$ are $\log \log |d_K|$ and $-(n-1) \log \log |d_K|$, respectively. Unconditionally, we show that there are infinitely many number fields with the extreme logarithmic derivatives; they are families of number fields whose Galois closures have the Galois group $C_n$ for $n=2,3,4,6$, $D_n$ for $n=3,4,5$, $S_4$ or $A_5$.