We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We discuss the class of functions, which are well approximated on compacta by the geometric mean of the eigenvalues of a unital (completely) positive map into a matrix algebra or more generally a type $II_1$ factor, using the notion of a Fuglede–Kadison determinant. In two variables, the two classes are the same, but in three or more noncommuting variables, there are generally functions arising from type $II_1$ von Neumann algebras, due to the recently established failure of the Connes embedding conjecture. The question of whether or not approximability holds for scalar inputs is shown to be equivalent to a restricted form of the Connes embedding conjecture, the so-called shuffle-word-embedding conjecture.
Assuming an averaged form of Mertens’ conjecture and that the ordinates of the non-trivial zeros of the Riemann zeta function are linearly independent over the rationals, we analyse the finer structure of the terms in a well-known formula of Ramanujan.
We provide explicit bounds for the Riemann zeta-function on the line $\mathrm {Re}\,{s}=1$, assuming that the Riemann hypothesis holds up to height T. In particular, we improve some bounds in finite regions for the logarithmic derivative and the reciprocal of the Riemann zeta-function.
We use the Weyl bound for Dirichlet L-functions to derive zero-density estimates for L-functions associated to families of fixed-order Dirichlet characters. The results improve on previous bounds given by the author when $\sigma $ is sufficiently distant from the critical line.
We obtain a new bound on the second moment of modified shifted convolutions of the generalized threefold divisor function and show that, for applications, the modified version is sufficient.
We find closed formulas for arbitrarily high mixed moments of characteristic polynomials of the Alternative Circular Unitary Ensemble, as well as closed formulas for the averages of ratios of characteristic polynomials in this ensemble. A comparison is made to analogous results for the Circular Unitary Ensemble. Both moments and ratios are studied via symmetric function theory and a general formula of Borodin-Olshanski-Strahov.
An explicit transformation for the series $\sum \limits _{n=1}^{\infty }\displaystyle \frac {\log (n)}{e^{ny}-1}$, or equivalently, $\sum \limits _{n=1}^{\infty }d(n)\log (n)e^{-ny}$ for Re$(y)>0$, which takes y to $1/y$, is obtained for the first time. This series transforms into a series containing the derivative of $R(z)$, a function studied by Christopher Deninger while obtaining an analog of the famous Chowla–Selberg formula for real quadratic fields. In the course of obtaining the transformation, new important properties of $\psi _1(z)$ (the derivative of $R(z)$) are needed as is a new representation for the second derivative of the two-variable Mittag-Leffler function $E_{2, b}(z)$ evaluated at $b=1$, all of which may seem quite unexpected at first glance. Our transformation readily gives the complete asymptotic expansion of $\sum \limits _{n=1}^{\infty }\displaystyle \frac {\log (n)}{e^{ny}-1}$ as $y\to 0$ which was also not known before. An application of the latter is that it gives the asymptotic expansion of $ \displaystyle \int _{0}^{\infty }\zeta \left (\frac {1}{2}-it\right )\zeta '\left (\frac {1}{2}+it\right )e^{-\delta t}\, dt$ as $\delta \to 0$.
In 2007 Chang and Yu determined all the algebraic relations among Goss’s zeta values for $A=\mathbb F_q[\theta ]$, also known as the Carlitz zeta values. Goss raised the problem of determining all algebraic relations among Goss’s zeta values at positive integers for a general base ring A, but very little is known. In this paper, we develop a general method, and we determine all algebraic relations among Goss’s zeta values for the base ring A which is the coordinate ring of an elliptic curve defined over $\mathbb F_q$. To our knowledge, this is the first work tackling Goss’s problem when the base ring has class number strictly greater than 1.
This paper deals with applications of Voronin’s universality theorem for the Riemann zeta-function $\zeta$. Among other results we prove that every plane smooth curve appears up to a small error in the curve generated by the values $\zeta(\sigma+it)$ for real t where $\sigma\in(1/2,1)$ is fixed. In this sense, the values of the zeta-function on any such vertical line provides an atlas for plane curves. In the same framework, we study the curvature of curves generated from $\zeta(\sigma+it)$ when $\sigma>1/2$ and we show that there is a connection with the zeros of $\zeta'(\sigma+it)$. Moreover, we clarify under which conditions the real and the imaginary part of the zeta-function are jointly universal.
In this article, we prove that the Riemann hypothesis implies a conjecture of Chandee on shifted moments of the Riemann zeta function. The proof is based on ideas of Harper concerning sharp upper bounds for the $2k$th moments of the Riemann zeta function on the critical line.
Let $k \geqslant 2$ be an integer. We prove that factorisation of integers into k parts follows the Dirichlet distribution $\mathrm{Dir}\left({1}/{k},\ldots,{1}/{k}\right)$ by multidimensional contour integration, thereby generalising the Deshouillers–Dress–Tenenbaum (DDT) arcsine law on divisors where $k=2$. The same holds for factorisation of polynomials or permutations. Dirichlet distribution with arbitrary parameters can be modelled similarly.
Consider the family of automorphic L-functions associated with primitive cusp forms of level one, ordered by weight k. Assuming that k tends to infinity, we prove a new approximation formula for the cubic moment of shifted L-values over this family which relates it to the fourth moment of the Riemann zeta function. More precisely, the formula includes a conjectural main term, the fourth moment of the Riemann zeta function and error terms of size smaller than that predicted by the recipe conjectures.
We prove an upper bound for the sum of values of the ideal class zeta-function over nontrivial zeros of the Riemann zeta-function. The same result for the Dedekind zeta-function is also obtained. This may shed light on some unproved cases of the general Dedekind conjecture.
In this article, we obtain transformation formulas analogous to the identity of Ramanujan, Hardy and Littlewood in the setting of primitive Maass cusp form over the congruence subgroup $\Gamma _0(N)$ and also provide an equivalent criterion of the grand Riemann hypothesis for the $L$-function associated with the primitive Maass cusp form over $\Gamma _0(N)$.
By examining two hypergeometric series transformations, we establish several remarkable infinite series identities involving harmonic numbers and quintic central binomial coefficients, including five conjectured recently by Z.-W. Sun [‘Series with summands involving harmonic numbers’, Preprint, 2023, arXiv:2210.07238v7]. This is realised by ‘the coefficient extraction method’ implemented by Mathematica commands.
We formulate a generalization of Riesz-type criteria in the setting of L-functions belonging to the Selberg class. We obtain a criterion which is sufficient for the grand Riemann hypothesis (GRH) for L-functions satisfying axioms of the Selberg class without imposing the Ramanujan hypothesis on their coefficients. We also construct a subclass of the Selberg class and prove a necessary criterion for GRH for L-functions in this subclass. Identities of Ramanujan–Hardy–Littlewood type are also established in this setting, specific cases of which yield new transformation formulas involving special values of the Meijer G-function of the type ${G^{n , 0}_{0 , n}}$.
In this paper, we prove the algebraicity of some L-values attached to quaternionic modular forms. We follow the rather well-established path of the doubling method. Our main contribution is that we include the case where the corresponding symmetric space is of non-tube type. We make various aspects very explicit, such as the doubling embedding, coset decomposition, and the definition of algebraicity of modular forms via CM-points.