To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show that substantially more than a quarter of the odd integers of the form $pq$ up to $x$, with $p,q$ both prime, satisfy $p\equiv q\equiv 3~(\text{mod}\,4)$.
In this paper we show that sieve methods used previously to investigate primes in short intervals and corresponding Goldbach-type problems can be modified to obtain results on primes in Beatty sequences in short intervals.
We prove that every integer $n\geqslant 10$ such that $n\not \equiv 1\text{ mod }4$ can be written as the sum of the square of a prime and a square-free number. This makes explicit a theorem of Erdős that every sufficiently large integer of this type may be written in such a way. Our proof requires us to construct new explicit results for primes in arithmetic progressions. As such, we use the second author’s numerical computation regarding the generalised Riemann hypothesis to extend the explicit bounds of Ramaré–Rumely.
We establish lower bounds for (i) the numbers of positive and negative terms and (ii) the number of sign changes in the sequence of Fourier coefficients at squarefree integers of a half-integral weight modular Hecke eigenform.
Let $P(n)$ denote the largest prime factor of an integer $n\geq 2$. In this paper, we study the distribution of the sequence $\{f(P(n)):n\geq 1\}$ over the set of congruence classes modulo an integer $b\geq 2$, where $f$ is a strongly $q$-additive integer-valued function (that is, $f(aq^{j}+b)=f(a)+f(b),$ with $(a,b,j)\in \mathbb{N}^{3}$, $0\leq b<q^{j}$). We also show that the sequence $\{{\it\alpha}P(n):n\geq 1,f(P(n))\equiv a\;(\text{mod}~b)\}$ is uniformly distributed modulo 1 if and only if ${\it\alpha}\in \mathbb{R}\!\setminus \!\mathbb{Q}$.
In terms of class field theory we give a necessary and sufficient condition for an integer to be representable by the quadratic form $x^{2}+xy+ny^{2}$ ($n\in \mathbb{N}$ arbitrary) under extra conditions $x\equiv 1\;\text{mod}\;m$, $y\equiv 0\;\text{mod}\;m$ on the variables. We also give some examples where their extended ring class numbers are less than or equal to $3$.
We show that the restriction to square-free numbers of the representation function attached to a norm form does not correlate with nilsequences. By combining this result with previous work of Browning and the author, we obtain an application that is used in recent work of Harpaz and Wittenberg on the fibration method for rational points.
We consider the random functions $S_{N}(z):=\sum _{n=1}^{N}z(n)$, where $z(n)$ is the completely multiplicative random function generated by independent Steinhaus variables $z(p)$. It is shown that $\mathbb{E}|S_{N}|\gg \sqrt{N}(\log N)^{-0.05616}$ and that $(\mathbb{E}|S_{N}|^{q})^{1/q}\gg _{q}\sqrt{N}(\log N)^{-0.07672}$ for all $q>0$.
We prove an asymptotic formula for the sum $\sum _{n\leq N}d(n^{2}-1)$, where $d(n)$ denotes the number of divisors of $n$. During the course of our proof, we also furnish an asymptotic formula for the sum $\sum _{d\leq N}g(d)$, where $g(d)$ denotes the number of solutions $x$ in $\mathbb{Z}_{d}$ to the equation $x^{2}\equiv 1~(\text{mod}~d)$.
We discuss heuristic asymptotic formulae for the number of isogeny classes of pairing-friendly abelian varieties of fixed dimension $g\geqslant 2$ over prime finite fields. In each formula, the embedding degree $k\geqslant 2$ is fixed and the rho-value is bounded above by a fixed real ${\it\rho}_{0}>1$. The first formula involves families of ordinary abelian varieties whose endomorphism ring contains an order in a fixed CM-field $K$ of degree $g$ and generalizes previous work of the first author when $g=1$. It suggests that, when ${\it\rho}_{0}<g$, there are only finitely many such isogeny classes. On the other hand, there should be infinitely many such isogeny classes when ${\it\rho}_{0}>g$. The second formula involves families whose endomorphism ring contains an order in a fixed totally real field $K_{0}^{+}$ of degree $g$. It suggests that, when ${\it\rho}_{0}>2g/(g+2)$ (and in particular when ${\it\rho}_{0}>1$ if $g=2$), there are infinitely many isogeny classes of $g$-dimensional abelian varieties over prime fields whose endomorphism ring contains an order of $K_{0}^{+}$. We also discuss the impact that polynomial families of pairing-friendly abelian varieties has on our heuristics, and review the known cases where they are expected to provide more isogeny classes than predicted by our heuristic formulae.
An integer $d$ is called a jumping champion for a given $x$ if $d$ is the most common gap between consecutive primes up to $x$. Occasionally, several gaps are equally common. Hence, there can be more than one jumping champion for the same $x$. In 1999, Odlyzko et al provided convincing heuristics and empirical evidence for the truth of the hypothesis that the jumping champions greater than 1 are 4 and the primorials $2,6,30,210,2310,\ldots \,$. In this paper, we prove that an appropriate form of the Hardy–Littlewood prime $k$-tuple conjecture for prime pairs and prime triples implies that all sufficiently large jumping champions are primorials and that all sufficiently large primorials are jumping champions over a long range of $x$.
This paper presents a new result concerning the distribution of 2-Selmer ranks in the quadratic twist family of an elliptic curve over an arbitrary number field $K$ with a single point of order two that does not have a cyclic 4-isogeny defined over its two-division field. We prove that at least half of all the quadratic twists of such an elliptic curve have arbitrarily large 2-Selmer rank, showing that the distribution of 2-Selmer ranks in the quadratic twist family of such an elliptic curve differs from the distribution of 2-Selmer ranks in the quadratic twist family of an elliptic curve having either no rational two-torsion or full rational two-torsion.
An integer $n$ is said to be $y$-friable if its largest prime factor $P^{+}(n)$ is less than $y$. In this paper, it is shown that the $y$-friable integers less than $x$ have a weak exponent of distribution at least $3/5-{\it\varepsilon}$ when $(\log x)^{c}\leqslant x\leqslant x^{1/c}$ for some $c=c({\it\varepsilon})\geqslant 1$, that is to say, they are well distributed in the residue classes of a fixed integer $a$, on average over moduli ${\leqslant}x^{3/5-{\it\varepsilon}}$ for each fixed $a\neq 0$ and ${\it\varepsilon}>0$. We apply this to the estimation of the sum $\sum _{2\leqslant n\leqslant x,P^{+}(n)\leqslant y}{\it\tau}(n-1)$ when $(\log x)^{c}\leqslant y$. This follows and improves on previous work of Fouvry and Tenenbaum. Our proof combines the dispersion method of Linnik in the setting of Bombieri, Fouvry, Friedlander and Iwaniec with recent work of Harper on friable integers in arithmetic progressions.
The discriminant of a trinomial of the form $x^{n}\pm \,x^{m}\pm \,1$ has the form $\pm n^{n}\pm (n-m)^{n-m}m^{m}$ if $n$ and $m$ are relatively prime. We investigate when these discriminants have nontrivial square factors. We explain various unlikely-seeming parametric families of square factors of these discriminant values: for example, when $n$ is congruent to 2 (mod 6) we have that $((n^{2}-n+1)/3)^{2}$ always divides $n^{n}-(n-1)^{n-1}$. In addition, we discover many other square factors of these discriminants that do not fit into these parametric families. The set of primes whose squares can divide these sporadic values as $n$ varies seems to be independent of $m$, and this set can be seen as a generalization of the Wieferich primes, those primes $p$ such that $2^{p}$ is congruent to 2 (mod $p^{2}$). We provide heuristics for the density of these sporadic primes and the density of squarefree values of these trinomial discriminants.
By establishing an improved level of distribution we study almost-primes of the form $f(p,n)$ where $f$ is an irreducible binary form over $\mathbb{Z}$.
We give a new proof of Vinogradov’s three primes theorem, which asserts that all sufficiently large odd positive integers can be written as the sum of three primes. Existing proofs rely on the theory of $L$-functions, either explicitly or implicitly. Our proof is sieve theoretical and uses a transference principle, the idea of which was first developed by Green [Ann. of Math. (2) 161 (3) (2005), 1609–1636] and used in the proof of Green and Tao’s theorem [Ann. of Math. (2) 167 (2) (2008), 481–547]. To make our argument work, we also develop an additive combinatorial result concerning popular sums, which may be of independent interest.
Let $A\subset \{1,\dots ,N\}$ be a set of prime numbers containing no non-trivial arithmetic progressions. Suppose that $A$ has relative density ${\it\alpha}=|A|/{\it\pi}(N)$, where ${\it\pi}(N)$ denotes the number of primes in the set $\{1,\dots ,N\}$. By modifying Helfgott and De Roton’s work [Improving Roth’s theorem in the primes. Int. Math. Res. Not. IMRN2011 (4) (2011), 767–783], we improve their bound and show that
We show that the exponent of distribution of the ternary divisor function $d_{3}$ in arithmetic progressions to prime moduli is at least $1/2+1/46$, improving results of Friedlander–Iwaniec and Heath-Brown. Furthermore, when averaging over a fixed residue class, we prove that this exponent is increased to $1/2+1/34$.