We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The purpose of this paper is to show how a sieve method which has had many applications to problems involving rational primes can be modified to derive new results on Gaussian primes (or, more generally, prime ideals in algebraic number fields). One consequence of our main theorem (Theorem 2 below) is the following result on rational primes.
Let q be a prime number and let a = (a1, …, as) be an s-tuple of distinct integers modulo q. For any x coprime with q, let be such that . For fixed s and q→∞ an asymptotic formula is given for the number of residue classes x modulo q for which
The more general case, when q is not necessarily prime and x is restricted to lie in a given subinterval of [1, q], is also treated.
Let φ(n) be the Euler function (i.e., φ(n) denotes the number of integers less than n which are relatively prime to n), and define
These functions were extensively studied by several mathematicians. One of the problems investigated concerns their sign changes. We say that a function fx) has a sign change at x = x0 if f(x0 −) f(x0 +) < 0, and f(x) has a sign change on the integer n if (n)f(n+1) < 0. The numbers of sign changes and sign changes on integers of f(x) in the interval [1, T] are denoted by Xf(T) and Nf(T), respectively.
Investigations concerning the gaps between consecutive prime numbers have long occupied an important position on the interface between additive and multiplicative number theory. Perhaps the most famous problem concerning these gaps, the Twin Prime Conjecture, asserts that the aforementioned gaps are infinitely often as small as 2. Although a proof of this conjecture seems presently far beyond our reach (but see [5] and [10] for related results), weak evidence in its favour comes from studying unusually short gaps between prime numbers. Thus, while it follows from the Prime Number Theorem that the average gap between consecutive primes of size about x is around log x, it is now known that such gaps can be infinitely often smaller than 0–249 log x (this is a celebrated result of Maier [12], building on earlier work of a number of authors; see in particular [7], [13], [3] and [11]). A conjecture weaker than the Twin Prime Conjecture asserts that there are infinitely many gaps between prime numbers which are powers of 2, but unfortunately this conjecture also seems well beyond our grasp. Extending this line of thought, Kent D. Boklan has posed the problem of establishing that the gaps between prime numbers infinitely often have only small prime divisors, and here the latter divisors should be small relative to the size of the small gaps established by Maier [12]. In this paper we show that the gaps between consecutive prime numbers infinitely often have only small prime divisors, thereby solving Boklan's problem. It transpires that the methods which we develop to treat Boklan's problem are capable also of detecting multiplicative properties of more general type in the differences between consecutive primes, and this theme we also explore herein.
A general analytic scheme for Poisson approximation to discrete distributions is studied in which the asymptotic behaviours of the generalized total variation, Fortet-Mourier (or Wasserstein), Kolmogorov and Matusita (or Hellinger) distances are explicitly characterized. Applications of this result include many number-theoretic functions and combinatorial structures. Our approach differs from most of the existing ones in the literature and is easily amended for other discrete approximations; arithmetic and combinatorial examples for Bessel approximation are also presented. A unified approach is developed for deriving uniform estimates for probability generating functions of the number of components in general decomposable combinatorial structures, with or without analytic continuation outside their circles of convergence.
The question as to which “natural” sequences contain infinitely many primes is of considerable fascination to the number-theorist. One such “natura” sequence is [nc[ where [·] denotes integer part. Piatetski-Shapiro [10] showed that there are infinitely many primes in this sequence for 1 < c < 12/11, obtaining the expected asymptotic formula for the number of such primes. The exponent 12/11 has been increased gradually by a number of authors to the present record 45/38 held by Kumchev [9]. It is expected that there are infinitely many primes of the form [nc[ for all cεε[1, ∞)/ℤ. Deshouillers [3] showed that this is almost always true, in the sense of Lebesgue measure on [1, ∞). Balog [2] improved and generalized this result to show that, for almost all c > 1,
This is an expanded version of two lectures given at the conference held at Sydney University in December 1997 on the 50th anniversary of the death of G. H. Hardy.
A recurring theme in number theory is that multiplicative and additive properties of integers are more or less independent of each other, the classical result in this vein being Dirichlet's theorem on primes in arithmetic progressions. Since the set of primitive roots to a given modulus is a union of arithmetic progressions, it is natural to study the distribution of prime primitive roots. Results concerning upper bounds for the least prime primitive root to a given modulus q, which we denote by g*(q), have hitherto been of three types. There are conditional bounds: assuming the Generalized Riemann Hypothesis, Shoup [11] has shown that
where ω(n) denotes the number of distinct prime factors of n. There are also upper bounds that hold for almost all moduli q. For instance, one can show [9] that for all but O(Y∈) primes up to Y, we have
for some positive constant C(∈). Finally, one can apply a much stronger result, a uniform upper bound for the least prime in a single arithmetic progression. The best uniform result of this type, due to Heath-Brown [7], implies that . However, there is not at present any stronger unconditional upper bound for g*(q) that holds uniformly for all moduli q. The purpose of this paper is to provide such an upper bound, at least for primitive roots that are “almost prime”.
We investigate conditions which ensure that systems of binomial polynomials with integer coefficients are simultaneously free of large prime factors. In particular, for each positive number ε, we show that there are infinitely many strings of consecutive integers of size about n, free of prime factors exceeding nε, with the length of the strings tending to infinity with speed log log log log n.
The Redheffer matrix An = (aij)n×n defined by aij = 1 when i|j or j = 1 and aij = 0 otherwise has many interesting number theoretic properties. In this paper we give fairly precise estimates for its eigenvalues in punctured discs of small radius centred at 1.
Let g(n) be a complex valued multiplicative function such that |g(n)| ≤ 1. In this paper we shall be concerned with the validity of the inequality
under the weak condition g(p)∈ for all primes p, where is a fixed subset of the closed unit disc Thus our point of view is similar to that of Halász [Hz 2] in that we seek a general inequality in terms of simple quantities, albeit g(p) may have a quite irregular distribution. We are not concerned here with the problem of asymptotic formulae for the sum on the left of (1) studied by (among others) Delange [D], Halász [Hz 1] and Wirsing [W].
We consider the Egyptian fraction equation and discuss techniques for generating solutions. By examining a quadratic recurrence relation modulo a family of primes we have found some 500 new infinite sequences of solutions. We also initiate an investigation of the randomness of the distribution of solutions, and show that there are infinitely many solutions not generated by the aforementioned technique.
We shall give an explicit form of the Artin-Tschebotareff density theorem in function fields with several variable over finite fields. It may be an analogous prime number theorem in the higher dimensional case.
Let K be a number field of degree k > 1. We would like to know if a positive integer N can be represented as the sum, or the difference, of two norms of integral ideals of K. Suppose K/ℚ is abelian of conductor Δ. Then from the class field theory (Artin's reciprocity law) the norms are fully characterized by the residue classes modulo Δ. Precisely, a prime number p ∤ Δ (unramified in K) is a norm (splits completely in K), if, and only if,
where k is a subgroup of (ℤ/Δℤ)* of index k. Accordingly we may ask N to be represented as the sum
or the difference
of positive integers a, b each of which splits completely in K. For N to be represented in these ways the following congruences
must be solvable in α β є k, respectively. Moreover the condition
must hold. Presumably the above local conditions are sufficient for (−) to have infinitely many solutions and for (+) to have arbitrarily many solutions, provided N is sufficiently large in the latter case.
Let s1, s2, … denote the squarefree numbers in ascending order. In [1], Erdős showed that, if 0 ≤ γ ≤ 2, then
where B(γ) is a function only of γ. In 1973 Hooley [4] improved the range of validity of this result to 0 ≤ γ ≤ 3, and then later gained a further slight improvement by a method he outlined at the International Number Theory Symposium at Stillwater, Oklahoma in 1984. We have, however, independently obtained the better improvement that (1) holds for
in contrast to the range
derived by Hooley. The main purpose of this paper is to substantiate our new result. Professor Hooley has informed me that there are similarities between our methods as well as significant differences.
Let J = (s1, s2, … ) be a collection of relatively prime integers, and suppose that π(n) = |J∩{1,2,…, n}| is a regularly varying function with index a satisfying 0 < α < l. We investigate the “stationary random sieve” generated by J, proving that the number of integers less than k which escape the action of the sieve has a probability mass function with approximate order k-α/2 in the limit as k → ∞. This result may be used to deduce certain asymptotic properties of the set of integers which are divisible by no s є J, in that it gives new information about the usual deterministic (that is, non-random) sieve. This work extends previous results valid when si=pi2, the square of the ith prime.
Let $g\geqslant 2$. A real number is said to be $g$-normal if its base $g$ expansion contains every finite sequence of digits with the expected limiting frequency. Let $\unicode[STIX]{x1D711}$ denote Euler’s totient function, let $\unicode[STIX]{x1D70E}$ be the sum-of-divisors function, and let $\unicode[STIX]{x1D706}$ be Carmichael’s lambda-function. We show that if $f$ is any function formed by composing $\unicode[STIX]{x1D711}$, $\unicode[STIX]{x1D70E}$, or $\unicode[STIX]{x1D706}$, then the number
obtained by concatenating the base $g$ digits of successive $f$-values is $g$-normal. We also prove the same result if the inputs $1,2,3,\ldots$ are replaced with the primes $2,3,5,\ldots$. The proof is an adaptation of a method introduced by Copeland and Erdős in 1946 to prove the 10-normality of $0.235711131719\cdots \,$.