We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We establish higher moment formulae for Siegel transforms on the space of affine unimodular lattices as well as on certain congruence quotients of $\mathrm {SL}_d({\mathbb {R}})$. As applications, we prove functional central limit theorems for lattice point counting for affine and congruence lattices using the method of moments.
We obtain a new bound on the second moment of modified shifted convolutions of the generalized threefold divisor function and show that, for applications, the modified version is sufficient.
For $k\geq 2$ and a nonzero integer n, a generalised Diophantine m-tuple with property $D_k(n)$ is a set of m positive integers $S = \{a_1,a_2,\ldots , a_m\}$ such that $a_ia_j + n$ is a kth power for $1\leq i< j\leq m$. Define $M_k(n):= \text {sup}\{|S| : S$ having property $D_k(n)\}$. Dixit et al. [‘Generalised Diophantine m-tuples’, Proc. Amer. Math. Soc.150(4) (2022), 1455–1465] proved that $M_k(n)=O(\log n)$, for a fixed k, as n varies. In this paper, we obtain effective upper bounds on $M_k(n)$. In particular, we show that for $k\geq 2$, $M_k(n) \leq 3\,\phi (k) \log n$ if n is sufficiently large compared to k.
This paper is concerned with the relationship of $y$-smooth integers and de Bruijn's approximation $\Lambda (x,\,y)$. Under the Riemann hypothesis, Saias proved that the count of $y$-smooth integers up to $x$, $\Psi (x,\,y)$, is asymptotic to $\Lambda (x,\,y)$ when $y \ge (\log x)^{2+\varepsilon }$. We extend the range to $y \ge (\log x)^{3/2+\varepsilon }$ by introducing a correction factor that takes into account the contributions of zeta zeros and prime powers. We use this correction term to uncover a lower order term in the asymptotics of $\Psi (x,\,y)/\Lambda (x,\,y)$. The term relates to the error term in the prime number theorem, and implies that large positive (resp. negative) values of $\sum _{n \le y} \Lambda (n)-y$ lead to large positive (resp. negative) values of $\Psi (x,\,y)-\Lambda (x,\,y)$, and vice versa. Under the Linear Independence hypothesis, we show a Chebyshev's bias in $\Psi (x,\,y)-\Lambda (x,\,y)$.
We study higher uniformity properties of the Möbius function $\mu $, the von Mangoldt function $\Lambda $, and the divisor functions $d_k$ on short intervals $(X,X+H]$ with $X^{\theta +\varepsilon } \leq H \leq X^{1-\varepsilon }$ for a fixed constant $0 \leq \theta < 1$ and any $\varepsilon>0$.
More precisely, letting $\Lambda ^\sharp $ and $d_k^\sharp $ be suitable approximants of $\Lambda $ and $d_k$ and $\mu ^\sharp = 0$, we show for instance that, for any nilsequence $F(g(n)\Gamma )$, we have
$$\begin{align*}\sum_{X < n \leq X+H} (f(n)-f^\sharp(n)) F(g(n) \Gamma) \ll H \log^{-A} X \end{align*}$$
when $\theta = 5/8$ and $f \in \{\Lambda , \mu , d_k\}$ or $\theta = 1/3$ and $f = d_2$.
As a consequence, we show that the short interval Gowers norms $\|f-f^\sharp \|_{U^s(X,X+H]}$ are also asymptotically small for any fixed s for these choices of $f,\theta $. As applications, we prove an asymptotic formula for the number of solutions to linear equations in primes in short intervals and show that multiple ergodic averages along primes in short intervals converge in $L^2$.
Our innovations include the use of multiparameter nilsequence equidistribution theorems to control type $II$ sums and an elementary decomposition of the neighborhood of a hyperbola into arithmetic progressions to control type $I_2$ sums.
An explicit transformation for the series $\sum \limits _{n=1}^{\infty }\displaystyle \frac {\log (n)}{e^{ny}-1}$, or equivalently, $\sum \limits _{n=1}^{\infty }d(n)\log (n)e^{-ny}$ for Re$(y)>0$, which takes y to $1/y$, is obtained for the first time. This series transforms into a series containing the derivative of $R(z)$, a function studied by Christopher Deninger while obtaining an analog of the famous Chowla–Selberg formula for real quadratic fields. In the course of obtaining the transformation, new important properties of $\psi _1(z)$ (the derivative of $R(z)$) are needed as is a new representation for the second derivative of the two-variable Mittag-Leffler function $E_{2, b}(z)$ evaluated at $b=1$, all of which may seem quite unexpected at first glance. Our transformation readily gives the complete asymptotic expansion of $\sum \limits _{n=1}^{\infty }\displaystyle \frac {\log (n)}{e^{ny}-1}$ as $y\to 0$ which was also not known before. An application of the latter is that it gives the asymptotic expansion of $ \displaystyle \int _{0}^{\infty }\zeta \left (\frac {1}{2}-it\right )\zeta '\left (\frac {1}{2}+it\right )e^{-\delta t}\, dt$ as $\delta \to 0$.
We prove that there exist infinitely many coprime numbers a, b, c with $a+b=c$ and $c>\operatorname {\mathrm {rad}}(abc)\exp (6.563\sqrt {\log c}/\log \log c)$. These are the most extremal examples currently known in the $abc$ conjecture, thereby providing a new lower bound on the tightest possible form of the conjecture. Our work builds on that of van Frankenhuysen (J. Number Theory 82(2000), 91–95) who proved the existence of examples satisfying the above bound with the constant $6.068$ in place of $6.563$. We show that the constant $6.563$ may be replaced by $4\sqrt {2\delta /e}$ where $\delta $ is a constant such that all unimodular lattices of sufficiently large dimension n contain a nonzero vector with $\ell _1$-norm at most $n/\delta $.
Erdős, Graham and Selfridge considered, for each positive integer n, the least value of $t_n$ so that the integers $n+1, n+2, \dots, n+t_n $ contain a subset the product of whose members with n is a square. An open problem posed by Granville concerns the size of $t_n$, under the assumption of the ABC conjecture. We establish some results on the distribution of $t_n$, and in the process solve Granville’s problem unconditionally.
Let $k \geqslant 2$ be an integer. We prove that factorisation of integers into k parts follows the Dirichlet distribution $\mathrm{Dir}\left({1}/{k},\ldots,{1}/{k}\right)$ by multidimensional contour integration, thereby generalising the Deshouillers–Dress–Tenenbaum (DDT) arcsine law on divisors where $k=2$. The same holds for factorisation of polynomials or permutations. Dirichlet distribution with arbitrary parameters can be modelled similarly.
Let $\gcd (n_{1},\ldots ,n_{k})$ denote the greatest common divisor of positive integers $n_{1},\ldots ,n_{k}$ and let $\phi $ be the Euler totient function. For any real number $x>3$ and any integer $k\geq 2$, we investigate the asymptotic behaviour of $\sum _{n_{1}\ldots n_{k}\leq x}\phi (\gcd (n_{1},\ldots ,n_{k})). $
Let $f(X) \in {\mathbb Z}[X]$ be a polynomial of degree $d \ge 2$ without multiple roots and let ${\mathcal F}(N)$ be the set of Farey fractions of order N. We use bounds for some new character sums and the square-sieve to obtain upper bounds, pointwise and on average, on the number of fields ${\mathbb Q}(\sqrt {f(r)})$ for $r\in {\mathcal F}(N)$, with a given discriminant.
We use bounds of character sums and some combinatorial arguments to show the abundance of very smooth numbers which also have very few nonzero binary digits.
A set of integers greater than 1 is primitive if no member in the set divides another. Erdős proved in 1935 that the series
$f(A) = \sum _{a\in A}1/(a \log a)$
is uniformly bounded over all choices of primitive sets A. In 1986, he asked if this bound is attained for the set of prime numbers. In this article, we answer in the affirmative.
As further applications of the method, we make progress towards a question of Erdős, Sárközy and Szemerédi from 1968. We also refine the classical Davenport–Erdős theorem on infinite divisibility chains, and extend a result of Erdős, Sárközy and Szemerédi from 1966.
Let f be a non-CM Hecke eigencusp form of level 1 and fixed weight, and let $\{\lambda_f(n)\}_n$ be its sequence of normalised Fourier coefficients. We show that if $K/ \mathbb{Q}$ is any number field, and $\mathcal{N}_K$ denotes the collection of integers representable as norms of integral ideals of K, then a positive proportion of the positive integers $n \in \mathcal{N}_K$ yield a sign change for the sequence $\{\lambda_f(n)\}_{n \in \mathcal{N}_K}$. More precisely, for a positive proportion of $n \in \mathcal{N}_K \cap [1,X]$ we have $\lambda_f(n)\lambda_f(n') < 0$, where n′ is the first element of $\mathcal{N}_K$ greater than n for which $\lambda_f(n') \neq 0$.
For example, for $K = \mathbb{Q}(i)$ and $\mathcal{N}_K = \{m^2+n^2 \;:\; m,n \in \mathbb{Z}\}$ the set of sums of two squares, we obtain $\gg_f X/\sqrt{\log X}$ such sign changes, which is best possible (up to the implicit constant) and improves upon work of Banerjee and Pandey. Our proof relies on recent work of Matomäki and Radziwiłł on sparsely-supported multiplicative functions, together with some technical refinements of their results due to the author.
In a related vein, we also consider the question of sign changes along shifted sums of two squares, for which multiplicative techniques do not directly apply. Using estimates for shifted convolution sums among other techniques, we establish that for any fixed $a \neq 0$ there are $\gg_{f,\varepsilon} X^{1/2-\varepsilon}$ sign changes for $\lambda_f$ along the sequence of integers of the form $a + m^2 + n^2 \leq X$.
Let ${\overline{p}}(n)$ denote the overpartition function. In this paper, we study the asymptotic higher-order log-concavity property of the overpartition function in a similar framework done by Hou and Zhang for the partition function. This will enable us to move on further in order to prove log-concavity of overpartitions, explicitly by studying the asymptotic expansion of the quotient ${\overline{p}}(n-1){\overline{p}}(n+1)/{\overline{p}}(n)^2$ up to a certain order. This enables us to additionally prove 2-log-concavity and higher Turán inequalities with a unified approach.
In this paper we investigate the quantity of diagonal quartic surfaces $a_0 X_0^4 + a_1 X_1^4 + a_2 X_2^4 +a_3 X_3^4 = 0$ which have a Brauer–Manin obstruction to the Hasse principle. We are able to find an asymptotic formula for the quantity of such surfaces ordered by height. The proof uses a generalization of a method of Heath-Brown on sums over linked variables. We also show that there exists no uniform formula for a generic generator in this family.
Fujii obtained a formula for the average number of Goldbach representations with lower-order terms expressed as a sum over the zeros of the Riemann zeta function and a smaller error term. This assumed the Riemann Hypothesis. We obtain an unconditional version of this result and obtain applications conditional on various conjectures on zeros of the Riemann zeta function.
We prove some zero density theorems for certain families of Dirichlet L-functions. More specifically, the subjects of our interest are the collections of Dirichlet L-functions associated with characters to moduli from certain sparse sets and of certain fixed orders.