We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The lifting problem for universal quadratic forms over a totally real number field K consists of determining the existence or otherwise of a quadratic form with integer coefficients (or $\mathbb {Z}$-form) that is universal over K. We prove the nonexistence of universal $\mathbb {Z}$-forms over simplest cubic fields for which the integer parameter is big enough. The monogenic case is already known. We prove the nonexistence in the nonmonogenic case by using the existence of a totally positive nonunit algebraic integer in K with minimal (codifferent) trace equal to one.
This paper is concerned with the study of the fine Selmer group of an abelian variety over a $\mathbb{Z}_{p}$-extension which is not necessarily cyclotomic. It has been conjectured that these fine Selmer groups are always torsion over $\mathbb{Z}_{p}[[ \Gamma ]]$, where $\Gamma$ is the Galois group of the $\mathbb{Z}_{p}$-extension in question. In this paper, we shall provide several strong evidences towards this conjecture. Namely, we show that the conjectural torsionness is consistent with the pseudo-nullity conjecture of Coates–Sujatha. We also show that if the conjecture is known for the cyclotomic $\mathbb{Z}_{p}$-extension, then it holds for almost all $\mathbb{Z}_{p}$-extensions. We then carry out a similar study for the fine Selmer group of an elliptic modular form. When the modular forms are ordinary and come from a Hida family, we relate the torsionness of the fine Selmer groups of the specialization. This latter result allows us to show that the conjectural torsionness in certain cases is consistent with the growth number conjecture of Mazur. Finally, we end with some speculations on the torsionness of fine Selmer groups over an arbitrary p-adic Lie extension.
For a given genus $g \geq 1$, we give lower bounds for the maximal number of rational points on a smooth projective absolutely irreducible curve of genus g over $\mathbb{F}_q$. As a consequence of Katz–Sarnak theory, we first get for any given $g>0$, any $\varepsilon>0$ and all q large enough, the existence of a curve of genus g over $\mathbb{F}_q$ with at least $1+q+ (2g-\varepsilon) \sqrt{q}$ rational points. Then using sums of powers of traces of Frobenius of hyperelliptic curves, we get a lower bound of the form $1+q+1.71 \sqrt{q}$ valid for $g \geq 3$ and odd $q \geq 11$. Finally, explicit constructions of towers of curves improve this result: We show that the bound $1+q+4 \sqrt{q} -32$ is valid for all $g\ge 2$ and for all q.
Let $\ell $ be a prime number. The Iwasawa theory of multigraphs is the systematic study of growth patterns in the number of spanning trees in abelian $\ell $-towers of multigraphs. In this context, growth patterns are realized by certain analogs of Iwasawa invariants, which depend on the prime $\ell $ and the abelian $\ell $-tower of multigraphs. We formulate and study statistical questions about the behavior of the Iwasawa $\mu $ and $\lambda $ invariants.
Given a set $S=\{x^2+c_1,\dots,x^2+c_s\}$ defined over a field and an infinite sequence $\gamma$ of elements of S, one can associate an arboreal representation to $\gamma$, generalising the case of iterating a single polynomial. We study the probability that a random sequence $\gamma$ produces a “large-image” representation, meaning that infinitely many subquotients in the natural filtration are maximal. We prove that this probability is positive for most sets S defined over $\mathbb{Z}[t]$, and we conjecture a similar positive-probability result for suitable sets over $\mathbb{Q}$. As an application of large-image representations, we prove a density-zero result for the set of prime divisors of some associated quadratic sequences. We also consider the stronger condition of the representation being finite-index, and we classify all S possessing a particular kind of obstruction that generalises the post-critically finite case in single-polynomial iteration.
In this note, we prove that every Salem number is expressible as a difference of two Pisot numbers. More precisely, we show that for each Salem number α of degree d, there are infinitely many positive integers n for which $\alpha^{2n-1}-\alpha^n+\alpha$ and $\alpha^{2n-1}-\alpha^n$ are both Pisot numbers of degree d and that the smallest such n is at most $6^{d/2-1}+1$. We also prove that every real positive algebraic number can be expressed as a quotient of two Pisot numbers. Earlier, Salem himself had proved that every Salem number can be written in this way.
We prove an upper bound for the sum of values of the ideal class zeta-function over nontrivial zeros of the Riemann zeta-function. The same result for the Dedekind zeta-function is also obtained. This may shed light on some unproved cases of the general Dedekind conjecture.
We prove that the class of all the rings $\mathbb {Z}/m\mathbb {Z}$ for all $m>1$ is decidable. This gives a positive solution to a problem of Ax asked in his celebrated 1968 paper on the elementary theory of finite fields [1, Problem 5, p. 270]. In our proof, we reduce the problem to the decidability of the ring of adeles $\mathbb {A}_{\mathbb {Q}}$ of $\mathbb {Q}$.
Let $f(X) \in {\mathbb Z}[X]$ be a polynomial of degree $d \ge 2$ without multiple roots and let ${\mathcal F}(N)$ be the set of Farey fractions of order N. We use bounds for some new character sums and the square-sieve to obtain upper bounds, pointwise and on average, on the number of fields ${\mathbb Q}(\sqrt {f(r)})$ for $r\in {\mathcal F}(N)$, with a given discriminant.
Niven’s theorem asserts that $\{\cos (r\pi ) \mid r\in \mathbb {Q}\}\cap \mathbb {Q}=\{0,\pm 1,\pm 1/2\}.$ In this paper, we use elementary techniques and results from arithmetic dynamics to obtain an algorithm for classifying all values in the set $\{\cos (r\pi ) \mid r\in \mathbb {Q}\}\cap K$, where K is an arbitrary number field.
The tame Gras–Munnier Theorem gives a criterion for the existence of a $ {\mathbb Z}/p{\mathbb Z} $-extension of a number field K ramified at exactly a tame set S of places of K, the finite $v \in S$ necessarily having norm $1$ mod p. The criterion is the existence of a nontrivial dependence relation on the Frobenius elements of these places in a certain governing extension. We give a short new proof which extends the theorem by showing the subset of elements of $H^1(G_S,{\mathbb {Z}}/p{\mathbb {Z}})$ giving rise to such extensions of K has the same cardinality as the set of these dependence relations. We then reprove the key Proposition 2.2 using the more sophisticated Greenberg–Wiles formula based on global duality.
We construct an anticyclotomic Euler system for the Rankin–Selberg convolutions of two modular forms, using p-adic families of generalised Gross–Kudla–Schoen diagonal cycles. As applications of this construction, we prove new results on the Bloch–Kato conjecture in analytic ranks zero and one, and a divisibility towards an Iwasawa main conjecture.
Let p be a prime. In this paper, we use techniques from Iwasawa theory to study questions about rank jump of elliptic curves in cyclic extensions of degree p. We also study growth of the p-primary Selmer group and the Shafarevich–Tate group in cyclic degree-p extensions and improve upon previously known results in this direction.
In this article, we provide an explicit upper bound for $h_K \mathcal {R}_K d_K^{-1/2}$ which depends on an effective constant in the error term of the Ideal Theorem.
Let f be a non-CM Hecke eigencusp form of level 1 and fixed weight, and let $\{\lambda_f(n)\}_n$ be its sequence of normalised Fourier coefficients. We show that if $K/ \mathbb{Q}$ is any number field, and $\mathcal{N}_K$ denotes the collection of integers representable as norms of integral ideals of K, then a positive proportion of the positive integers $n \in \mathcal{N}_K$ yield a sign change for the sequence $\{\lambda_f(n)\}_{n \in \mathcal{N}_K}$. More precisely, for a positive proportion of $n \in \mathcal{N}_K \cap [1,X]$ we have $\lambda_f(n)\lambda_f(n') < 0$, where n′ is the first element of $\mathcal{N}_K$ greater than n for which $\lambda_f(n') \neq 0$.
For example, for $K = \mathbb{Q}(i)$ and $\mathcal{N}_K = \{m^2+n^2 \;:\; m,n \in \mathbb{Z}\}$ the set of sums of two squares, we obtain $\gg_f X/\sqrt{\log X}$ such sign changes, which is best possible (up to the implicit constant) and improves upon work of Banerjee and Pandey. Our proof relies on recent work of Matomäki and Radziwiłł on sparsely-supported multiplicative functions, together with some technical refinements of their results due to the author.
In a related vein, we also consider the question of sign changes along shifted sums of two squares, for which multiplicative techniques do not directly apply. Using estimates for shifted convolution sums among other techniques, we establish that for any fixed $a \neq 0$ there are $\gg_{f,\varepsilon} X^{1/2-\varepsilon}$ sign changes for $\lambda_f$ along the sequence of integers of the form $a + m^2 + n^2 \leq X$.
Let $\ell $ and p be (not necessarily distinct) prime numbers and F be a global function field of characteristic $\ell $ with field of constants $\kappa $. Assume that there exists a prime $P_\infty $ of F which has degree $1$ and let $\mathcal {O}_F$ be the subring of F consisting of functions with no poles away from $P_\infty $. Let $f(X)$ be a polynomial in X with coefficients in $\kappa $. We study solutions to Diophantine equations of the form $Y^{n}=f(X)$ which lie in $\mathcal {O}_F$ and, in particular, show that if m and $f(X)$ satisfy additional conditions, then there are no nonconstant solutions. The results apply to the study of solutions to $Y^{n}=f(X)$ in certain rings of integers in $\mathbb {Z}_{p}$-extensions of F known as constant$\mathbb {Z}_p$-extensions. We prove similar results for solutions in the polynomial ring $K[T_1, \ldots , T_r]$, where K is any field of characteristic $\ell $, showing that the only solutions must lie in K. We apply our methods to study solutions of Diophantine equations of the form $Y^n=\sum _{i=1}^d (X+ir)^m$, where $m,n, d\geq 2$ are integers.
Let $d \ge 3$ be an integer and let $P \in \mathbb{Z}[x]$ be a polynomial of degree d whose Galois group is $S_d$. Let $(a_n)$ be a non-degenerate linearly recursive sequence of integers which has P as its characteristic polynomial. We prove, under the generalised Riemann hypothesis, that the lower density of the set of primes which divide at least one non-zero element of the sequence $(a_n)$ is positive.
John Rognes developed a notion of Galois extension of commutative ring spectra, and this includes a criterion for identifying an extension as unramified. Ramification for commutative ring spectra can be detected by relative topological Hochschild homology and by topological André–Quillen homology. In the classical algebraic context, it is important to distinguish between tame and wild ramification. Noether’s theorem characterizes tame ramification in terms of a normal basis, and tame ramification can also be detected via the surjectivity of the trace map. For commutative ring spectra, we suggest to study the Tate construction as a suitable analog. It tells us at which integral primes there is tame or wild ramification, and we determine its homotopy type in examples in the context of topological K-theory and topological modular forms.
Romyar Sharifi has constructed a map $\varpi _M$ from the first homology of the modular curve $X_1(M)$ to the K-group $K_2(\operatorname {\mathrm {\mathbf {Z}}}[\zeta _M+\zeta _M^{-1}, \frac {1}{M}]) \otimes \operatorname {\mathrm {\mathbf {Z}}}[1/2]$, where $\zeta _M$ is a primitive Mth root of unity. Sharifi conjectured that $\varpi _M$ is annihilated by a certain Eisenstein ideal. Fukaya and Kato proved this conjecture after tensoring with $\operatorname {\mathrm {\mathbf {Z}}}_p$ for a prime $p\geq 5$ dividing M. More recently, Sharifi and Venkatesh proved the conjecture for Hecke operators away from M. In this note, we prove two main results. First, we give a relation between $\varpi _M$ and $\varpi _{M'}$ when $M' \mid M$. Our method relies on the techniques developed by Sharifi and Venkatesh. We then use this result in combination with results of Fukaya and Kato in order to get the Eisenstein property of $\varpi _M$ for Hecke operators of index dividing M.