We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let p be a fixed prime number, and let F be a global function field with characteristic not equal to p. In this article, we shall study the variation properties of the Sylow p-subgroups of the even K-groups in a p-adic Lie extension of F. When the p-adic Lie extension is assumed to contain the cyclotomic $\mathbb {Z}_p$-extension of F, we obtain growth estimate of these groups. We also establish a duality between the direct limit and inverse limit of the even K-groups.
We show that for any $\varepsilon>0$, the number of monic, reciprocal, length-$5$ integer polynomials that have house at least $1+\varepsilon $ is finite. The proof is algorithmic, and we are consequently able to compute a complete list (not imposing any bound on the degree) of small Mahler measures of length-$5$ polynomials that have house at least $1.01$.
For larger lengths, the analogous finiteness statement is false, as we show by examples. For length $6$ we show that if one also imposes an upper bound for the Mahler measure that is strictly below the smallest Pisot number $\theta = 1.32471\cdots $, and if the length $6$ polynomial is a cyclotomic multiple of an irreducible polynomial, then the number of polynomials with house at least $1+\varepsilon $ is finite.
We pursue these ideas to search opportunistically for small Mahler measures represented by longer polynomials. We find one new small measure.
We give an algorithm that finds all Salem numbers in an interval $[a,b]$ that are the Mahler measure of an integer polynomial of length at most $6$, provided $1<a \le b < \theta $.
We consider the relationship between the Mahler measure $M(f)$ of a polynomial f and its separation $\operatorname {sep}(f)$. Mahler [‘An inequality for the discriminant of a polynomial’, Michigan Math. J.11 (1964), 257–262] proved that if $f(x) \in \mathbb {Z}[x]$ is separable of degree n, then $\operatorname {sep}(f) \gg _n M(f)^{-(n-1)}$. This spurred further investigations into the implicit constant involved in that relationship and led to questions about the optimal exponent on $M(f)$. However, there has been relatively little study concerning upper bounds on $\operatorname {sep}(f)$ in terms of $M(f)$. We prove that if $f(x) \in \mathbb {C}[x]$ has degree n, then $\operatorname {sep}(f) \ll n^{-1/2}M(f)^{1/(n-1)}$. Moreover, this bound is sharp up to the implied constant factor. We further investigate the constant factor under various additional assumptions on $f(x)$; for example, if it has only real roots.
In this article, we obtain a necessary and sufficient condition for the pseudo-nullity of the p-ramified Iwasawa module for p-adic Lie extensions of totally real fields. It is applied to answer the corresponding question for the minus component of the unramified Iwasawa module for CM-fields. The results show that the pseudo-nullity is very rare.
In this article, we generalize results of Clozel and Ray (for $SL_2$ and $SL_n$, respectively) to give explicit ring-theoretic presentation in terms of a complete set of generators and relations of the Iwasawa algebra of the pro-p Iwahori subgroup of a simple, simply connected, split group $\mathbf {G}$ over ${{\mathbb Q}_p}$.
We investigate the relationship between lower bounds for the Mahler measure and splitting of primes, and prove various lower bounds for the Mahler measure of algebraic integers in terms of the least common multiples of all inertia degrees of primes. The results generalise work of the second author and Kumar [‘Lehmer’s problem and splitting of rational primes in number fields’, Acta Math. Hungar.169(2) (2023), 349–358].
For a prime p and a rational elliptic curve $E_{/\mathbb {Q}}$, set $K=\mathbb {Q}(E[p])$ to denote the torsion field generated by $E[p]:=\operatorname {ker}\{E\xrightarrow {p} E\}$. The class group $\operatorname {Cl}_K$ is a module over $\operatorname {Gal}(K/\mathbb {Q})$. Given a fixed odd prime number p, we study the average nonvanishing of certain Galois stable quotients of the mod-p class group $\operatorname {Cl}_K/p\operatorname {Cl}_K$. Here, E varies over all rational elliptic curves, ordered according to height. Our results are conditional, since we assume that the p-primary part of the Tate–Shafarevich group is finite. Furthermore, we assume predictions made by Delaunay for the statistical variation of the p-primary parts of Tate–Shafarevich groups. We also prove results in the case when the elliptic curve $E_{/\mathbb {Q}}$ is fixed and the prime p is allowed to vary.
We prove a comparison theorem between Greenberg–Benois $\mathcal {L}$-invariants and Fontaine–Mazur $\mathcal {L}$-invariants. Such a comparison theorem supplies an affirmative answer to a speculation of Besser–de Shalit.
Let $\mathcal {O}$ be a maximal order in the quaternion algebra over $\mathbb Q$ ramified at p and $\infty $. We prove two theorems that allow us to recover the structure of $\mathcal {O}$ from limited information. The first says that for any infinite set S of integers coprime to p, $\mathcal {O}$ is spanned as a ${\mathbb {Z}}$-module by elements with norm in S. The second says that $\mathcal {O}$ is determined up to isomorphism by its theta function.
Using the special value at $u=1$ of Artin–Ihara L-functions, we associate to every $\mathbb {Z}$-cover of a finite connected graph a polynomial, which we call the Ihara polynomial. We show that the number of spanning trees for the finite intermediate graphs of such a cover can be expressed in terms of the Pierce–Lehmer sequence associated to a factor of the Ihara polynomial. This allows us to express the asymptotic growth of the number of spanning trees in terms of the Mahler measure of this polynomial. Specialising to the situation where the base graph is a bouquet or the dumbbell graph gives us back previous results in the literature for circulant and I-graphs (including the generalised Petersen graphs). We also express the p-adic valuation of the number of spanning trees of the finite intermediate graphs in terms of the p-adic Mahler measure of the Ihara polynomial. When applied to a particular $\mathbb {Z}$-cover, our result gives us back Lengyel’s calculation of the p-adic valuations of Fibonacci numbers.
Multiples zeta values and alternating multiple zeta values in positive characteristic were introduced by Thakur and Harada as analogues of classical multiple zeta values of Euler and Euler sums. In this paper, we determine all linear relations between alternating multiple zeta values and settle the main goals of these theories. As a consequence, we completely establish Zagier–Hoffman’s conjectures in positive characteristic formulated by Todd and Thakur which predict the dimension and an explicit basis of the span of multiple zeta values of Thakur of fixed weight.
Let $\zeta _K(s)$ denote the Dedekind zeta-function associated to a number field K. We give an effective upper bound for the height of the first nontrivial zero other than $1/2$ of $\zeta _K(s)$ under the generalised Riemann hypothesis. This is a refinement of the earlier bound obtained by Sami [‘Majoration du premier zéro de la fonction zêta de Dedekind’, Acta Arith.99(1) (2000), 61–65].
A monic polynomial $f(x)\in {\mathbb Z}[x]$ of degree N is called monogenic if $f(x)$ is irreducible over ${\mathbb Q}$ and $\{1,\theta ,\theta ^2,\ldots ,\theta ^{N-1}\}$ is a basis for the ring of integers of ${\mathbb Q}(\theta )$, where $f(\theta )=0$. We use the classification of the Galois groups of quartic polynomials, due to Kappe and Warren [‘An elementary test for the Galois group of a quartic polynomial’, Amer. Math. Monthly96(2) (1989), 133–137], to investigate the existence of infinite collections of monogenic quartic polynomials having a prescribed Galois group, such that each member of the collection generates a distinct quartic field. With the exception of the cyclic case, we provide such an infinite single-parameter collection for each possible Galois group. We believe these examples are new and we provide evidence to support this belief by showing that they are distinct from other infinite collections in the literature. Finally, we devote a separate section to the cyclic case.
We show that if one of various cycle types occurs in the permutation action of a finite group on the cosets of a given subgroup, then every almost conjugate subgroup is conjugate. As a number theoretic application, corresponding decomposition types of primes effect that a number field is determined by the Dedekind zeta function. As a geometric application, coverings of Riemannian manifolds with certain geodesic lifting behaviours must be isometric.
Motivated by the recent work of Zhi-Wei Sun [‘Problems and results on determinants involving Legendre symbols’, Preprint, arXiv:2405.03626], we study some matrices concerning subgroups of finite fields. For example, let $q\equiv 3\pmod 4$ be an odd prime power and let $\phi $ be the unique quadratic multiplicative character of the finite field $\mathbb {F}_q$. If the set $\{s_1,\ldots ,s_{(q-1)/2}\}=\{x^2:\ x\in \mathbb {F}_q\setminus \{0\}\}$, then we prove that
A monic polynomial $f(x)\in {\mathbb Z}[x]$ of degree N is called monogenic if $f(x)$ is irreducible over ${\mathbb Q}$ and $\{1,\theta ,\theta ^2,\ldots ,\theta ^{N-1}\}$ is a basis for the ring of integers of ${\mathbb Q}(\theta )$, where $f(\theta )=0$. We prove that there exist exactly three distinct monogenic trinomials of the form $x^4+bx^2+d$ whose Galois group is the cyclic group of order 4. We also show that the situation is quite different when the Galois group is not cyclic.
Let $G$ be a split semisimple group over a global function field $K$. Given a cuspidal automorphic representation $\Pi$ of $G$ satisfying a technical hypothesis, we prove that for almost all primes $\ell$, there is a cyclic base change lifting of $\Pi$ along any $\mathbb {Z}/\ell \mathbb {Z}$-extension of $K$. Our proof does not rely on any trace formulas; instead it is based on using modularity lifting theorems, together with a Smith theory argument, to obtain base change for residual representations. As an application, we also prove that for any split semisimple group $G$ over a local function field $F$, and almost all primes $\ell$, any irreducible admissible representation of $G(F)$ admits a base change along any $\mathbb {Z}/\ell \mathbb {Z}$-extension of $F$. Finally, we characterize local base change more explicitly for a class of toral representations considered in work of Chan and Oi.
The deepest arithmetic invariants attached to an algebraic variety defined over a number field $F$ are conjecturally captured by the integral part of its motivic cohomology. There are essentially two ways of defining it when $X$ is a smooth projective variety: one is via the $K$-theory of a regular integral model, the other is through its $\ell$-adic realization. Both approaches are conjectured to coincide. This paper initiates the study of motivic cohomology for global fields of positive characteristic, hereafter named $A$-motivic cohomology, where classical mixed motives are replaced by mixed Anderson $A$-motives. Our main objective is to set the definitions of the integral part and the good$\ell$-adic part of the $A$-motivic cohomology using Gardeyn's notion of maximal models as the analogue of regular integral models of varieties. Our main result states that the integral part is contained in the good$\ell$-adic part. As opposed to what is expected in the number field setting, we show that the two approaches do not match in general. We conclude this work by introducing the submodule of regulated extensions of mixed Anderson $A$-motives, for which we expect the two approaches to match, and solve some particular cases of this expectation.
In this paper, we establish some finiteness results about the multiplicative dependence of rational values modulo sets which are ‘close’ (with respect to the Weil height) to division groups of finitely generated multiplicative groups of a number field K. For example, we show that under some conditions on rational functions $f_1, \ldots, f_n\in K(X)$, there are only finitely many elements $\alpha \in K$ such that $f_1(\alpha),\ldots,f_n(\alpha)$ are multiplicatively dependent modulo such sets.
For an elliptic curve E defined over a number field K and $L/K$ a Galois extension, we study the possibilities of the Galois group Gal$(L/K)$, when the Mordell–Weil rank of $E(L)$ increases from that of $E(K)$ by a small amount (namely 1, 2, and 3). In relation with the vanishing of corresponding L-functions at $s=1$, we prove several elliptic analogues of classical theorems related to Artin’s holomorphy conjecture. We then apply these to study the analytic minimal subfield, first introduced by Akbary and Murty, for the case when order of vanishing is 2. We also investigate how the order of vanishing changes as rank increases by 1 and vice versa, generalizing a theorem of Kolyvagin.