We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A set $S\subset {\mathbb {N}}$ is a Sidon set if all pairwise sums $s_1+s_2$ (for $s_1, s_2\in S$, $s_1\leqslant s_2$) are distinct. A set $S\subset {\mathbb {N}}$ is an asymptotic basis of order 3 if every sufficiently large integer $n$ can be written as the sum of three elements of $S$. In 1993, Erdős, Sárközy and Sós asked whether there exists a set $S$ with both properties. We answer this question in the affirmative. Our proof relies on a deep result of Sawin on the $\mathbb {F}_q[t]$-analogue of Montgomery's conjecture for convolutions of the von Mangoldt function.
In function fields in positive characteristic, we provide a concrete example of completely normal elements for a finite Galois extension. More precisely, for a nonabelian extension, we construct completely normal elements for Drinfeld modular function fields using Siegel functions in function fields. For an abelian extension, we construct completely normal elements for cyclotomic function fields.
We prove the geometric Satake equivalence for étale metaplectic covers of reductive group schemes and extend the Langlands parametrization of V. Lafforgue to genuine cusp forms defined on their associated covering groups.
Let $K_n=\mathbb{Q}(\alpha_n)$ be a family of algebraic number fields where $\alpha_n\in \mathbb{C}$ is a root of the nth exponential Taylor polynomial $\frac{x^n}{n!}+ \frac{x^{n-1}}{(n-1)!}+ \cdots +\frac{x^2}{2!}+\frac{x}{1!}+1$, $n\in \mathbb{N}$. In this paper, we give a formula for the exact power of any prime p dividing the discriminant of Kn in terms of the p-adic expansion of n. An explicit p-integral basis of Kn is also given for each prime p. These p-integral bases quickly lead to the construction of an integral basis of Kn.
Let ${\mathbb {Z}}_{K}$ denote the ring of algebraic integers of an algebraic number field $K = {\mathbb Q}(\theta )$, where $\theta $ is a root of a monic irreducible polynomial $f(x) = x^n + a(bx+c)^m \in {\mathbb {Z}}[x]$, $1\leq m<n$. We say $f(x)$ is monogenic if $\{1, \theta , \ldots , \theta ^{n-1}\}$ is a basis for ${\mathbb {Z}}_K$. We give necessary and sufficient conditions involving only $a, b, c, m, n$ for $f(x)$ to be monogenic. Moreover, we characterise all the primes dividing the index of the subgroup ${\mathbb {Z}}[\theta ]$ in ${\mathbb {Z}}_K$. As an application, we also provide a class of monogenic polynomials having non square-free discriminant and Galois group $S_n$, the symmetric group on n letters.
We construct a new family of quintic non-Pólya fields with large Pólya groups. We show that the Pólya number of such a field never exceeds five times the size of its Pólya group. Finally, we show that these non-Pólya fields are nonmonogenic of field index one.
A set of complex numbers $S$ is called invariant if it is closed under addition and multiplication, namely, for any $x, y \in S$ we have $x+y \in S$ and $xy \in S$. For each $s \in {\mathbb {C}}$ the smallest invariant set ${\mathbb {N}}[s]$ containing $s$ consists of all possible sums $\sum _{i \in I} a_i s^i$, where $I$ runs over all finite nonempty subsets of the set of positive integers ${\mathbb {N}}$ and $a_i \in {\mathbb {N}}$ for each $i \in I$. In this paper, we prove that for $s \in {\mathbb {C}}$ the set ${\mathbb {N}}[s]$ is everywhere dense in ${\mathbb {C}}$ if and only if $s \notin {\mathbb {R}}$ and $s$ is not a quadratic algebraic integer. More precisely, we show that if $s \in {\mathbb {C}} \setminus {\mathbb {R}}$ is a transcendental number, then there is a positive integer $n$ such that the sumset ${\mathbb {N}} t^n+{\mathbb {N}} t^{2n} +{\mathbb {N}} t^{3n}$ is everywhere dense in ${\mathbb {C}}$ for either $t=s$ or $t=s+s^2$. Similarly, if $s \in {\mathbb {C}} \setminus {\mathbb {R}}$ is an algebraic number of degree $d \ne 2, 4$, then there are positive integers $n, m$ such that the sumset ${\mathbb {N}} t^n+{\mathbb {N}} t^{2n} +{\mathbb {N}} t^{3n}$ is everywhere dense in ${\mathbb {C}}$ for $t=ms+s^2$. For quadratic and some special quartic algebraic numbers $s$ it is shown that a similar sumset of three sets cannot be dense. In each of these two cases the density of ${\mathbb {N}}[s]$ in ${\mathbb {C}}$ is established by a different method: for those special quartic numbers, it is possible to take a sumset of four sets.
We prove the compatibility of local and global Langlands correspondences for $\operatorname {GL}_n$ up to semisimplification for the Galois representations constructed by Harris-Lan-Taylor-Thorne [10] and Scholze [18]. More precisely, let $r_p(\pi )$ denote an n-dimensional p-adic representation of the Galois group of a CM field F attached to a regular algebraic cuspidal automorphic representation $\pi $ of $\operatorname {GL}_n(\mathbb {A}_F)$. We show that the restriction of $r_p(\pi )$ to the decomposition group of a place $v\nmid p$ of F corresponds up to semisimplification to $\operatorname {rec}(\pi _v)$, the image of $\pi _v$ under the local Langlands correspondence. Furthermore, we can show that the monodromy of the associated Weil-Deligne representation of $\left .r_p(\pi )\right |{}_{\operatorname {Gal}_{F_v}}$ is ‘more nilpotent’ than the monodromy of $\operatorname {rec}(\pi _v)$.
In this paper, we prove Kato’s main conjecture for $CM$ modular forms for primes of potentially ordinary reduction under certain hypotheses on the modular form.
We prove new results concerning the additive Galois module structure of wildly ramified non-abelian extensions $K/\mathbb{Q}$ with Galois group isomorphic to $A_4$, $S_4$, $A_5$, and dihedral groups of order $2p^n$ for certain prime powers $p^n$. In particular, when $K/\mathbb{Q}$ is a Galois extension with Galois group $G$ isomorphic to $A_4$, $S_4$ or $A_5$, we give necessary and sufficient conditions for the ring of integers $\mathcal{O}_{K}$ to be free over its associated order in the rational group algebra $\mathbb{Q}[G]$.
This paper goes beyond Katz–Sarnak theory on the distribution of curves over finite fields according to their number of rational points, theoretically, experimentally, and conjecturally. In particular, we give a formula for the limits of the moments measuring the asymmetry of this distribution for (non-hyperelliptic) curves of genus $g\geq 3$. The experiments point to a stronger notion of convergence than the one provided by the Katz–Sarnak framework for all curves of genus $\geq 3$. However, for elliptic curves and for hyperelliptic curves of every genus, we prove that this stronger convergence cannot occur.
We prove a conjectural formula for the Brumer–Stark units. Dasgupta and Kakde have shown the formula is correct up to a bounded root of unity. In this paper, we resolve the ambiguity in their result. We also remove an assumption from Dasgupta–Kakde’s result on the formula.
We prove the existence of $\mathrm {GSpin}_{2n}$-valued Galois representations corresponding to cohomological cuspidal automorphic representations of certain quasi-split forms of ${\mathrm {GSO}}_{2n}$ under the local hypotheses that there is a Steinberg component and that the archimedean parameters are regular for the standard representation. This is based on the cohomology of Shimura varieties of abelian type, of type $D^{\mathbb {H}}$, arising from forms of ${\mathrm {GSO}}_{2n}$. As an application, under similar hypotheses, we compute automorphic multiplicities, prove meromorphic continuation of (half) spin L-functions and improve on the construction of ${\mathrm {SO}}_{2n}$-valued Galois representations by removing the outer automorphism ambiguity.
Let $n$ be an integer congruent to $0$ or $3$ modulo $4$. Under the assumption of the ABC conjecture, we prove that, given any integer $m$ fulfilling only a certain coprimeness condition, there exist infinitely many imaginary quadratic fields having an everywhere unramified Galois extension of group $A_n \times C_m$. The same result is obtained unconditionally in special cases.
Let $K={\mathbb {Q}}(\theta )$ be an algebraic number field with $\theta $ satisfying a monic irreducible polynomial $f(x)$ of degree n over ${\mathbb {Q}}.$ The polynomial $f(x)$ is said to be monogenic if $\{1,\theta ,\ldots ,\theta ^{n-1}\}$ is an integral basis of K. Deciding whether or not a monic irreducible polynomial is monogenic is an important problem in algebraic number theory. In an attempt to answer this problem for a certain family of polynomials, Jones [‘A brief note on some infinite families of monogenic polynomials’, Bull. Aust. Math. Soc.100 (2019), 239–244] conjectured that if $n\ge 3$, $1\le m\le n-1$, $\gcd (n,mB)=1$ and A is a prime number, then the polynomial $x^n+A (Bx+1)^m\in {\mathbb {Z}}[x]$ is monogenic if and only if $n^n+(-1)^{n+m}B^n(n-m)^{n-m}m^mA$ is square-free. We prove that this conjecture is true.
We prove a large finite field version of the Boston–Markin conjecture on counting Galois extensions of the rational function field with a given Galois group and the smallest possible number of ramified primes. Our proof involves a study of structure groups of (direct products of) racks.
Let $\Gamma \subset \overline {\mathbb {Q}}^*$ be a finitely generated subgroup. Denote by $\Gamma _{\mathrm {div}}$ its division group. A recent conjecture due to Rémond, related to the Zilber–Pink conjecture, predicts that the absolute logarithmic Weil height of an element of $\mathbb {Q}(\Gamma _{\mathrm {div}})^*\backslash \Gamma _{\mathrm {div}}$ is bounded from below by a positive constant depending only on $\Gamma $. In this paper, we propose a new way to tackle this problem.
We study the Galois module structure of the class groups of the Artin–Schreier extensions K over k of extension degree p, where $k:={\mathbb F}_q(T)$ is the rational function field and p is a prime number. The structure of the p-part $Cl_K(p)$ of the ideal class group of K as a finite G-module is determined by the invariant ${\lambda }_n$, where $G:=\operatorname {\mathrm {Gal}}(K/k)=\langle {\sigma } \rangle $ is the Galois group of K over k, and ${\lambda }_n = \dim _{{\mathbb F}_p}(Cl_K(p)^{({\sigma }-1)^{n-1}}/Cl_K(p)^{({\sigma }-1)^{n}})$. We find infinite families of the Artin–Schreier extensions over k whose ideal class groups have guaranteed prescribed ${\lambda }_n$-rank for $1 \leq n \leq 3$. We find an algorithm for computing ${\lambda }_3$-rank of $Cl_K(p)$. Using this algorithm, for a given integer $t \ge 2$, we get infinite families of the Artin–Schreier extensions over k whose ${\lambda }_1$-rank is t, ${\lambda }_2$-rank is $t-1$, and ${\lambda }_3$-rank is $t-2$. In particular, in the case where $p=2$, for a given positive integer $t \ge 2$, we obtain an infinite family of the Artin–Schreier quadratic extensions over k whose $2$-class group rank (resp. $2^2$-class group rank and $2^3$-class group rank) is exactly t (resp. $t-1$ and $t-2$). Furthermore, we also obtain a similar result on the $2^n$-ranks of the divisor class groups of the Artin–Schreier quadratic extensions over k.
For a principal ideal domain $A$, the Latimer–MacDuffee correspondence sets up a bijection between the similarity classes of matrices in $\textrm{M}_{n}(A)$ with irreducible characteristic polynomial $f(x)$ and the ideal classes of the order $A[x]/(f(x))$. We prove that when $A[x]/(f(x))$ is maximal (i.e. integrally closed, i.e. a Dedekind domain), then every similarity class contains a representative that is, in a sense, close to being a companion matrix. The first step in the proof is to show that any similarity class corresponding to an ideal (not necessarily prime) of degree one contains a representative of the desired form. The second step is a previously unpublished result due to Lenstra that implies that when $A[x]/(f(x))$ is maximal, every ideal class contains an ideal of degree one.
In this paper, we study multiple zeta values (abbreviated as MZV’s) over function fields in positive characteristic. Our main result is to prove Thakur’s basis conjecture, which plays the analogue of Hoffman’s basis conjecture for real MZV’s. As a consequence, we derive Todd’s dimension conjecture, which is the analogue of Zagier’s dimension conjecture for classical real MZV’s.