We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We explore the relationship between (3-isogeny induced) Selmer group of an elliptic curve and the (3 part of) the ideal class group, over certain non-abelian number fields.
This paper discusses variants of Weber’s class number problem in the spirit of arithmetic topology to connect the results of Sinnott–Kisilevsky and Kionke. Let p be a prime number. We first prove the p-adic convergence of class numbers in a ${\mathbb{Z}_{p}}$-extension of a global field and a similar result in a ${\mathbb{Z}_{p}}$-cover of a compact 3-manifold. Secondly, we establish an explicit formula for the p-adic limit of the p-power-th cyclic resultants of a polynomial using roots of unity of orders prime to p, the p-adic logarithm, and the Iwasawa invariants. Finally, we give thorough investigations of torus knots, twist knots, and elliptic curves; we complete the list of the cases with p-adic limits being in ${\mathbb{Z}}$ and find the cases such that the base p-class numbers are small and $\nu$’s are arbitrarily large.
Inspired by Nakamura’s work [36] on $\epsilon $-isomorphisms for $(\varphi ,\Gamma )$-modules over (relative) Robba rings with respect to the cyclotomic theory, we formulate an analogous conjecture for L-analytic Lubin-Tate $(\varphi _L,\Gamma _L)$-modules over (relative) Robba rings for any finite extension L of $\mathbb {Q}_p.$ In contrast to Kato’s and Nakamura’s setting, our conjecture involves L-analytic cohomology instead of continuous cohomology within the generalized Herr complex. Similarly, we restrict to the identity components of $D_{cris}$ and $D_{dR},$ respectively. For rank one modules of the above type or slightly more generally for trianguline ones, we construct $\epsilon $-isomorphisms for their Lubin-Tate deformations satisfying the desired interpolation property.
We prove a conjecture of Emerton, Gee and Hellmann concerning the overconvergence of étale $(\varphi,\Gamma)$-modules in families parametrized by topologically finite-type $\mathbf{Z}_{p}$-algebras. As a consequence, we deduce the existence of a natural map from the rigid fiber of the Emerton–Gee stack to the rigid analytic stack of $(\varphi,\Gamma)$-modules.
Let $K={\mathbb {Q}}(\sqrt {-7})$ and $\mathcal {O}$ the ring of integers in $K$. The prime $2$ splits in $K$, say $2{\mathcal {O}}={\mathfrak {p}}\cdot {\mathfrak {p}}^*$. Let $A$ be an elliptic curve defined over $K$ with complex multiplication by $\mathcal {O}$. Assume that $A$ has good ordinary reduction at both $\mathfrak {p}$ and ${\mathfrak {p}}^*$. Write $K_\infty$ for the field generated by the $2^\infty$–division points of $A$ over $K$ and let ${\mathcal {G}}={\mathrm {Gal}}(K_\infty /K)$. In this paper, by adopting a congruence formula of Yager and De Shalit, we construct the two-variable $2$-adic $L$-function on $\mathcal {G}$. Then by generalizing De Shalit’s local structure theorem to the two-variable setting, we prove a two-variable elliptic analogue of Iwasawa’s theorem on cyclotomic fields. As an application, we prove that every branch of the two-variable measure has Iwasawa $\mu$ invariant zero.
Let E be an elliptic curve defined over $\mathbb {Q}$ with good ordinary reduction at a prime $p\geq 5$ and let F be an imaginary quadratic field. Under appropriate assumptions, we show that the Pontryagin dual of the fine Mordell–Weil group of E over the $\mathbb {Z}_{p}^2$-extension of F is pseudo-null as a module over the Iwasawa algebra of the group $\mathbb {Z}_{p}^2$.
In this paper, we define compact open subgroups of quasi-split even unitary groups for each even non-negative integer and establish the theory of local newforms for irreducible tempered generic representations with a certain condition on the central characters. To do this, we use the local Gan–Gross–Prasad conjecture, the local Rankin–Selberg integrals and the local theta correspondence.
We prove a general convergence result for zeta functions of prehomogeneous vector spaces extending results of H. Saito, F. Sato and Yukie. Our analysis points to certain subspaces which yield boundary terms. We study it further in the setup arising from nilpotent orbits. In certain cases we determine the residue at the rightmost pole of the zeta function.
Let C be a curve defined over a number field K and write g for the genus of C and J for the Jacobian of C. Let $n \ge 2$. We say that an algebraic point $P \in C(\overline {K})$ has degree n if the extension $K(P)/K$ has degree n. By the Galois group of P we mean the Galois group of the Galois closure of $K(P)/K$ which we identify as a transitive subgroup of $S_n$. We say that P is primitive if its Galois group is primitive as a subgroup of $S_n$. We prove the following ‘single source’ theorem for primitive points. Suppose $g>(n-1)^2$ if $n \ge 3$ and $g \ge 3$ if $n=2$. Suppose that either J is simple or that $J(K)$ is finite. Suppose C has infinitely many primitive degree n points. Then there is a degree n morphism $\varphi : C \rightarrow \mathbb {P}^1$ such that all but finitely many primitive degree n points correspond to fibres $\varphi ^{-1}(\alpha )$ with $\alpha \in \mathbb {P}^1(K)$.
We prove, moreover, under the same hypotheses, that if C has infinitely many degree n points with Galois group $S_n$ or $A_n$, then C has only finitely many degree n points of any other primitive Galois group.
Without using the $p$-adic Langlands correspondence, we prove that for many finite-length smooth representations of $\mathrm {GL}_2(\mathbf {Q}_p)$ on $p$-torsion modules the $\mathrm {GL}_2(\mathbf {Q}_p)$-linear morphisms coincide with the morphisms that are linear for the normalizer of a parahoric subgroup. We identify this subgroup to be the Iwahori subgroup in the supersingular case, and $\mathrm {GL}_2(\mathbf {Z}_p)$ in the principal series case. As an application, we relate the action of parahoric subgroups to the action of the inertia group of $\mathrm {Gal}(\overline {\mathbf {Q}}_p/\mathbf {Q}_p)$, and we prove that if an irreducible Banach space representation $\Pi$ of $\mathrm {GL}_2(\mathbf {Q}_p)$ has infinite $\mathrm {GL}_2(\mathbf {Z}_p)$-length, then a twist of $\Pi$ has locally algebraic vectors. This answers a question of Dospinescu. We make the simplifying assumption that $p > 3$ and that all our representations are generic.
We investigate the relationship between lower bounds for the Mahler measure and splitting of primes, and prove various lower bounds for the Mahler measure of algebraic integers in terms of the least common multiples of all inertia degrees of primes. The results generalise work of the second author and Kumar [‘Lehmer’s problem and splitting of rational primes in number fields’, Acta Math. Hungar.169(2) (2023), 349–358].
We establish new results on complex and $p$-adic linear independence on a class of semiabelian varieties. As applications, we obtain transcendence results concerning complex and $p$-adic Weierstrass sigma functions associated with elliptic curves.
We prove a comparison theorem between Greenberg–Benois $\mathcal {L}$-invariants and Fontaine–Mazur $\mathcal {L}$-invariants. Such a comparison theorem supplies an affirmative answer to a speculation of Besser–de Shalit.
For a connected reductive group G over a nonarchimedean local field F of positive characteristic, Genestier-Lafforgue and Fargues-Scholze have attached a semisimple parameter ${\mathcal {L}}^{ss}(\pi )$ to each irreducible representation $\pi $. Our first result shows that the Genestier-Lafforgue parameter of a tempered $\pi $ can be uniquely refined to a tempered L-parameter ${\mathcal {L}}(\pi )$, thus giving the unique local Langlands correspondence which is compatible with the Genestier-Lafforgue construction. Our second result establishes ramification properties of ${\mathcal {L}}^{ss}(\pi )$ for unramified G and supercuspidal $\pi $ constructed by induction from an open compact (modulo center) subgroup. If ${\mathcal {L}}^{ss}(\pi )$ is pure in an appropriate sense, we show that ${\mathcal {L}}^{ss}(\pi )$ is ramified (unless G is a torus). If the inducing subgroup is sufficiently small in a precise sense, we show $\mathcal {L}^{ss}(\pi )$ is wildly ramified. The proofs are via global arguments, involving the construction of Poincaré series with strict control on ramification when the base curve is ${\mathbb {P}}^1$ and a simple application of Deligne’s Weil II.
Let $G$ be a split semisimple group over a global function field $K$. Given a cuspidal automorphic representation $\Pi$ of $G$ satisfying a technical hypothesis, we prove that for almost all primes $\ell$, there is a cyclic base change lifting of $\Pi$ along any $\mathbb {Z}/\ell \mathbb {Z}$-extension of $K$. Our proof does not rely on any trace formulas; instead it is based on using modularity lifting theorems, together with a Smith theory argument, to obtain base change for residual representations. As an application, we also prove that for any split semisimple group $G$ over a local function field $F$, and almost all primes $\ell$, any irreducible admissible representation of $G(F)$ admits a base change along any $\mathbb {Z}/\ell \mathbb {Z}$-extension of $F$. Finally, we characterize local base change more explicitly for a class of toral representations considered in work of Chan and Oi.
We define $p$-adic $\mathrm {BPS}$ or $p\mathrm {BPS}$ invariants for moduli spaces $\operatorname {M}_{\beta,\chi }$ of one-dimensional sheaves on del Pezzo and K3 surfaces by means of integration over a non-archimedean local field $F$. Our definition relies on a canonical measure $\mu _{\rm can}$ on the $F$-analytic manifold associated to $\operatorname {M}_{\beta,\chi }$ and the $p\mathrm {BPS}$ invariants are integrals of natural ${\mathbb {G}}_m$ gerbes with respect to $\mu _{\rm can}$. A similar construction can be done for meromorphic and usual Higgs bundles on a curve. Our main theorem is a $\chi$-independence result for these $p\mathrm {BPS}$ invariants. For one-dimensional sheaves on del Pezzo surfaces and meromorphic Higgs bundles, we obtain as a corollary the agreement of $p\mathrm {BPS}$ with usual $\mathrm {BPS}$ invariants through a result of Maulik and Shen [Cohomological$\chi$-independence for moduli of one-dimensional sheaves and moduli of Higgs bundles, Geom. Topol. 27 (2023), 1539–1586].
We discuss the p-adic Weierstrass zeta functions associated with elliptic curves defined over the field of algebraic numbers and linear relations for their values in the p-adic domain. These results are extensions of the p-adic analogues of results given by Wüstholz in the complex domain [see A. Baker and G. Wüstholz, Logarithmic Forms and Diophantine Geometry, New Mathematical Monographs, 9 (Cambridge University Press, Cambridge, 2007), Theorem 6.3] and also generalise a result of Bertrand to higher dimensions [‘Sous-groupes à un paramètre p-adique de variétés de groupe’, Invent. Math.40(2) (1977), 171–193].
We prove new results concerning the additive Galois module structure of wildly ramified non-abelian extensions $K/\mathbb{Q}$ with Galois group isomorphic to $A_4$, $S_4$, $A_5$, and dihedral groups of order $2p^n$ for certain prime powers $p^n$. In particular, when $K/\mathbb{Q}$ is a Galois extension with Galois group $G$ isomorphic to $A_4$, $S_4$ or $A_5$, we give necessary and sufficient conditions for the ring of integers $\mathcal{O}_{K}$ to be free over its associated order in the rational group algebra $\mathbb{Q}[G]$.
Lafforgue and Genestier-Lafforgue have constructed the global and (semisimplified) local Langlands correspondences for arbitrary reductive groups over function fields. We establish various properties of these correspondences regarding functoriality for cyclic base change: For $\mathbf {Z}/p\mathbf {Z}$-extensions of global function fields, we prove the existence of base change for mod p automorphic forms on arbitrary reductive groups. For $\mathbf {Z}/p\mathbf {Z}$-extensions of local function fields, we construct a base change homomorphism for the mod p Bernstein center of any reductive group. We then use this to prove existence of local base change for mod p irreducible representation along $\mathbf {Z}/p\mathbf {Z}$-extensions, and that Tate cohomology realizes base change descent, verifying a function field version of a conjecture of Treumann-Venkatesh.
The proofs are based on equivariant localization arguments for the moduli spaces of shtukas. They also draw upon new tools from modular representation theory, including parity sheaves and Smith-Treumann theory. In particular, we use these to establish a categorification of the base change homomorphism for mod p spherical Hecke algebras, in a joint appendix with Gus Lonergan.
This paper is concerned with the study of the fine Selmer group of an abelian variety over a $\mathbb{Z}_{p}$-extension which is not necessarily cyclotomic. It has been conjectured that these fine Selmer groups are always torsion over $\mathbb{Z}_{p}[[ \Gamma ]]$, where $\Gamma$ is the Galois group of the $\mathbb{Z}_{p}$-extension in question. In this paper, we shall provide several strong evidences towards this conjecture. Namely, we show that the conjectural torsionness is consistent with the pseudo-nullity conjecture of Coates–Sujatha. We also show that if the conjecture is known for the cyclotomic $\mathbb{Z}_{p}$-extension, then it holds for almost all $\mathbb{Z}_{p}$-extensions. We then carry out a similar study for the fine Selmer group of an elliptic modular form. When the modular forms are ordinary and come from a Hida family, we relate the torsionness of the fine Selmer groups of the specialization. This latter result allows us to show that the conjectural torsionness in certain cases is consistent with the growth number conjecture of Mazur. Finally, we end with some speculations on the torsionness of fine Selmer groups over an arbitrary p-adic Lie extension.