To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
have no rational points. As an illustration, using the sufficient condition, we study the arithmetic of hyperelliptic curves of the above form and show that there are infinitely many curves of the above form that are counterexamples to the Hasse principle explained by the Brauer–Manin obstruction.
Boyd showed that the beta expansion of Salem numbers of degree 4 were always eventually periodic. Based on an heuristic argument, Boyd had conjectured that the same is true for Salem numbers of degree 6 but not for Salem numbers of degree 8. This paper examines Salem numbers of degree 8 and collects experimental evidence in support of Boyd’s conjecture.
In this paper we present a new family of identities for multiple harmonic sums which generalize a recent result of Hessami Pilehrood et al [Trans. Amer. Math. Soc. (to appear)]. We then apply it to obtain a family of identities relating multiple zeta star values to alternating Euler sums. In such a typical identity the entries of the multiple zeta star values consist of blocks of arbitrarily long 2-strings separated by positive integers greater than two while the largest depth of the alternating Euler sums depends only on the number of 2-string blocks but not on their lengths.
Let $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\mathbb{F}_q$ be the finite field of $q$ elements. An analogue of the regular continued fraction expansion for an element $\alpha $ in the field of formal Laurent series over $\mathbb{F}_q$ is given uniquely by
where $(A_n(\alpha ))_{n=0}^\infty $ is a sequence of polynomials with coefficients in $\mathbb{F}_q$ such that $\deg (A_n(\alpha ))\ge 1$ for all $n\ge 1.$ We first prove the exactness of the continued fraction map in positive characteristic. This fact implies a number of strictly weaker properties. Particularly, we then use the weak-mixing property and ergodicity to establish various metrical results regarding the averages of partial quotients of continued fraction expansions. A sample result that we prove is that if $(p_n)_{n=1}^\infty $ denotes the sequence of prime numbers, we have
for almost every $\alpha $ with respect to Haar measure. In the case where the sequence $(p_n)_{n=1}^\infty $ is replaced by $(n)_{n=1}^\infty ,$ this result is due to V. Houndonougbo, V. Berthé and H. Nakada. Our proofs rely on pointwise subsequence and moving average ergodic theorems.
We obtain new bounds of multivariate exponential sums with monomials, when the variables run over rather short intervals. Furthermore, we use the same method to derive estimates on similar sums with multiplicative characters to which previously known methods do not apply. In particular, in the case of multiplicative characters modulo a prime $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}p$ we break the barrier of $p^{1/4}$ for ranges of individual variables.
We give a new proof of a recent result of Kohnen–Martin on a characterization of degree 2 Siegel cusp forms by the growth of their Fourier coefficients. Our main tools are Koecher–Maass series, Imai’s converse theorem and the theory of singular modular forms.
Let $F$ be a totally real field, and $v$ a place of $F$ dividing an odd prime $p$. We study the weight part of Serre’s conjecture for continuous totally odd representations $\overline{{\it\rho}}:G_{F}\rightarrow \text{GL}_{2}(\overline{\mathbb{F}}_{p})$ that are reducible locally at $v$. Let $W$ be the set of predicted Serre weights for the semisimplification of $\overline{{\it\rho}}|_{G_{F_{v}}}$. We prove that, when $\overline{{\it\rho}}|_{G_{F_{v}}}$ is generic, the Serre weights in $W$ for which $\overline{{\it\rho}}$ is modular are exactly the ones that are predicted (assuming that $\overline{{\it\rho}}$ is modular). We also determine precisely which subsets of $W$ arise as predicted weights when $\overline{{\it\rho}}|_{G_{F_{v}}}$ varies with fixed generic semisimplification.
For a positive integer $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}n$, let $\sigma (n)$ denote the sum of the positive divisors of $n$. Let $d$ be a proper divisor of $n$. We call $n$ a deficient-perfect number if $\sigma (n) = 2n - d$. In this paper, we show that there are no odd deficient-perfect numbers with three distinct prime divisors.
We determine a lower gap property for the growth of an unbounded $\mathbb{Z}$-valued $k$-regular sequence. In particular, if $f:\mathbb{N}\to \mathbb{Z}$ is an unbounded $k$-regular sequence, we show that there is a constant $c>0$ such that $|f(n)|>c\log n$ infinitely often. We end our paper by answering a question of Borwein, Choi and Coons on the sums of completely multiplicative automatic functions.
Recently, Keith used the theory of modular forms to study 9-regular partitions modulo 2 and 3. He obtained one infinite family of congruences modulo 3, and meanwhile proposed an analogous conjecture. In this note, we show that 9-regular partitions and 3-cores satisfy the same congruences modulo 3. Thus, we first derive several results on 3-cores, and then generalise Keith’s conjecture and get a stronger result, which implies that all of Keith’s results on congruences modulo 3 are consequences of our result.
with a multiplicative character ${\it\chi}$ modulo $p$ where ${\mathcal{I}}=\{1,\dots ,H\}$ and ${\mathcal{G}}$ is a subgroup of order $T$ of the multiplicative group of the finite field of $p$ elements. A nontrivial upper bound on $S_{{\it\chi}}(a,{\mathcal{I}},{\mathcal{G}})$ can be derived from the Burgess bound if $H\geq p^{1/4+{\it\varepsilon}}$ and from some standard elementary arguments if $T\geq p^{1/2+{\it\varepsilon}}$, where ${\it\varepsilon}>0$ is arbitrary. We obtain a nontrivial estimate in a wider range of parameters $H$ and $T$. We also estimate double sums
We determine several variants of the classical interpolation formula for finite fields which produce polynomials that induce a desirable mapping on the nonspecified elements, and without increasing the number of terms in the formula. As a corollary, we classify those permutation polynomials over a finite field which are their own compositional inverse, extending work of C. Wells.
We study the automorphic Green function $\mathop{\rm gr}\nolimits _\Gamma $ on quotients of the hyperbolic plane by cofinite Fuchsian groups $\Gamma $, and the canonical Green function $\mathop{\rm gr}\nolimits ^{\rm can}_X$ on the standard compactification $X$ of such a quotient. We use a limiting procedure, starting from the resolvent kernel, and lattice point estimates for the action of $\Gamma $ on the hyperbolic plane to prove an “approximate spectral representation” for $\mathop{\rm gr}\nolimits _\Gamma $. Combining this with bounds on Maaß forms and Eisenstein series for $\Gamma $, we prove explicit bounds on $\mathop{\rm gr}\nolimits _\Gamma $. From these results on $\mathop{\rm gr}\nolimits _\Gamma $ and new explicit bounds on the canonical $(1,1)$-form of $X$, we deduce explicit bounds on $\mathop{\rm gr}\nolimits ^{\rm can}_X$.
Let $X$ be a smooth proper curve over a finite field of characteristic $p$. We prove a product formula for $p$-adic epsilon factors of arithmetic $\mathscr{D}$-modules on $X$. In particular we deduce the analogous formula for overconvergent $F$-isocrystals, which was conjectured previously. The $p$-adic product formula is a counterpart in rigid cohomology of the Deligne–Laumon formula for epsilon factors in $\ell$-adic étale cohomology (for $\ell \neq p$). One of the main tools in the proof of this $p$-adic formula is a theorem of regular stationary phase for arithmetic $\mathscr{D}$-modules that we prove by microlocal techniques.
We study the limiting behavior of the discrete spectra associated to the principal congruence subgroups of a reductive group over a number field. While this problem is well understood in the cocompact case (i.e., when the group is anisotropic modulo the center), we treat groups of unbounded rank. For the groups $\text{GL}(n)$ and $\text{SL}(n)$ we show that the suitably normalized spectra converge to the Plancherel measure (the limit multiplicity property). For general reductive groups we obtain a substantial reduction of the problem. Our main tool is the recent refinement of the spectral side of Arthur’s trace formula obtained in [Finis, Lapid, and Müller, Ann. of Math. (2) 174(1) (2011), 173–195; Finis and Lapid, Ann. of Math. (2) 174(1) (2011), 197–223], which allows us to show that for $\text{GL}(n)$ and $\text{SL}(n)$ the contribution of the continuous spectrum is negligible in the limit.
Computational Galois theory, in particular the problem of computing the Galois group of a given polynomial, is a very old problem. Currently, the best algorithmic solution is Stauduhar’s method. Computationally, one of the key challenges in the application of Stauduhar’s method is to find, for a given pair of groups $H<G$, a $G$-relative $H$-invariant, that is a multivariate polynomial $F$ that is $H$-invariant, but not $G$-invariant. While generic, theoretical methods are known to find such $F$, in general they yield impractical answers. We give a general method for computing invariants of large degree which improves on previous known methods, as well as various special invariants that are derived from the structure of the groups. We then apply our new invariants to the task of computing the Galois groups of polynomials over the rational numbers, resulting in the first practical degree independent algorithm.
We apply the endoscopic classification of automorphic forms on $U(3)$ to study the growth of the first Betti number of congruence covers of a Picard modular surface. As a consequence, we establish a case of a conjecture of Sarnak and Xue on cohomology growth.
Let $\nu _{f}(n)$ be the $n\mathrm{th}$ normalized Fourier coefficient of a Hecke–Maass cusp form $f$ for ${\rm SL }(2,\mathbb{Z})$ and let $\alpha $ be a real number. We prove strong oscillations of the argument of $\nu _{f}(n)\mu (n) \exp (2\pi i n \alpha )$ as $n$ takes consecutive integral values.
In this paper, we prove that the Sato–Tate conjecture for primitive Maass forms holds on average. We also investigate the rate of convergence in the Sato–Tate conjecture and establish some estimates of the discrepancy with respect to the Sato–Tate measure on the average of primitive Maass forms.
The cubic version of the Lucas cryptosystem is set up based on the cubic recurrence relation of the Lucas function by Said and Loxton [‘A cubic analogue of the RSA cryptosystem’, Bull. Aust. Math. Soc.68 (2003), 21–38]. To implement this type of cryptosystem in a limited environment, it is necessary to accelerate encryption and decryption procedures. Therefore, this paper concentrates on improving the computation time of encryption and decryption in cubic Lucas cryptosystems. The new algorithm is designed based on new properties of the cubic Lucas function and mathematical techniques. To illustrate the efficiency of our algorithm, an analysis was carried out with different size parameters and the performance of the proposed and previously existing algorithms was evaluated with experimental data and mathematical analysis.