We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A monic polynomial in ${\mathbf{F} }_{q} [t] $ of degree $n$ over a finite field ${\mathbf{F} }_{q} $ of odd characteristic can be written as the sum of two irreducible monic elements in ${\mathbf{F} }_{q} [t] $ of degrees $n$ and $n- 1$ if $q$ is larger than a bound depending only on $n$. The main tool is a sufficient condition for simultaneous primality of two polynomials in one variable $x$ with coefficients in ${\mathbf{F} }_{q} [t] $.
Building on the concept of pretentious multiplicative functions, we give a new and largely elementary proof of the best result known on the counting function of primes in arithmetic progressions.
Let $p\gt 2$ be prime, and let $F$ be a totally real field in which $p$ is unramified. We give a sufficient criterion for a $\mathrm{mod} \hspace{0.167em} p$ Galois representation to arise from a $\mathrm{mod} \hspace{0.167em} p$ Hilbert modular form of parallel weight one, by proving a ‘companion forms’ theorem in this case. The techniques used are a mixture of modularity lifting theorems and geometric methods. As an application, we show that Serre’s conjecture for $F$ implies Artin’s conjecture for totally odd two-dimensional representations over $F$.
Let $N/ F$ be an odd-degree Galois extension of number fields with Galois group $G$ and rings of integers ${\mathfrak{O}}_{N} $ and ${\mathfrak{O}}_{F} = \mathfrak{O}$. Let $ \mathcal{A} $ be the unique fractional ${\mathfrak{O}}_{N} $-ideal with square equal to the inverse different of $N/ F$. B. Erez showed that $ \mathcal{A} $ is a locally free $\mathfrak{O}[G] $-module if and only if $N/ F$ is a so-called weakly ramified extension. Although a number of results have been proved regarding the freeness of $ \mathcal{A} $ as a $ \mathbb{Z} [G] $-module, the question remains open. In this paper we prove that $ \mathcal{A} $ is free as a $ \mathbb{Z} [G] $-module provided that $N/ F$ is weakly ramified and under the hypothesis that for every prime $\wp $ of $\mathfrak{O}$ which ramifies wildly in $N/ F$, the decomposition group is abelian, the ramification group is cyclic and $\wp $ is unramified in $F/ \mathbb{Q} $. We make crucial use of a construction due to the first author which uses Dwork’s exponential power series to describe self-dual integral normal bases in Lubin–Tate extensions of local fields. This yields a new and striking relationship between the local norm-resolvent and the Galois Gauss sum involved. Our results generalise work of the second author concerning the case of base field $ \mathbb{Q} $.
Let $G$ be a connected, reductive algebraic group over a number field $F$ and let $E$ be an algebraic representation of ${G}_{\infty } $. In this paper we describe the Eisenstein cohomology ${ H}_{\mathrm{Eis} }^{q} (G, E)$ of $G$ below a certain degree ${q}_{ \mathsf{res} } $ in terms of Franke’s filtration of the space of automorphic forms. This entails a description of the map ${H}^{q} ({\mathfrak{m}}_{G} , K, \Pi \otimes E)\rightarrow { H}_{\mathrm{Eis} }^{q} (G, E)$, $q\lt {q}_{ \mathsf{res} } $, for all automorphic representations $\Pi $ of $G( \mathbb{A} )$ appearing in the residual spectrum. Moreover, we show that below an easily computable degree ${q}_{ \mathsf{max} } $, the space of Eisenstein cohomology ${ H}_{\mathrm{Eis} }^{q} (G, E)$ is isomorphic to the cohomology of the space of square-integrable, residual automorphic forms. We discuss some more consequences of our result and apply it, in order to derive a result on the residual Eisenstein cohomology of inner forms of ${\mathrm{GL} }_{n} $ and the split classical groups of type ${B}_{n} $, ${C}_{n} $, ${D}_{n} $.
Let $ \mathcal{X} $ be a curve over ${ \mathbb{F} }_{q} $ and let $N( \mathcal{X} )$, $g( \mathcal{X} )$ be its number of rational points and genus respectively. The Ihara constant $A(q)$ is defined by $A(q)= {\mathrm{lim~sup} }_{g( \mathcal{X} )\rightarrow \infty } N( \mathcal{X} )/ g( \mathcal{X} )$. In this paper, we employ a variant of Serre’s class field tower method to obtain an improvement of the best known lower bounds on $A(2)$ and $A(3)$.
In this article we show that the Czech mathematician Václav Šimerka discovered the factorization of $\frac{1}{9} (1{0}^{17} - 1)$ using a method based on the class group of binary quadratic forms more than 120 years before Shanks and Schnorr developed similar algorithms. Šimerka also gave the first examples of what later became known as Carmichael numbers.
For each solvable Galois group which appears in degree $9$ and each allowable signature, we find polynomials which define the fields of minimum absolute discriminant.
Gama and Nguyen [‘Finding short lattice vectors within Mordell’s inequality’, in: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, New York, 2008, 257–278] have presented slide reduction which is currently the best SVP approximation algorithm in theory. In this paper, we prove the upper and lower bounds for the ratios $\Vert { \mathbf{b} }_{i}^{\ast } \Vert / {\lambda }_{i} (\mathbf{L} )$ and $\Vert {\mathbf{b} }_{i} \Vert / {\lambda }_{i} (\mathbf{L} )$, where ${\mathbf{b} }_{1} , \ldots , {\mathbf{b} }_{n} $ is a slide reduced basis and ${\lambda }_{1} (\mathbf{L} ), \ldots , {\lambda }_{n} (\mathbf{L} )$ denote the successive minima of the lattice $\mathbf{L} $. We define generalised slide reduction and use slide reduction to approximate $i$-SIVP, SMP and CVP. We also present a critical slide reduced basis for blocksize 2.
In this paper we study Lp−Lr estimates of both the extension operator and the averaging operator associated with the algebraic variety S = {x ∈ : Q(x) = 0}, where Q(x) is a non-degenerate quadratic form over the finite field with q elements. We show that the Fourier decay estimate on S is good enough to establish the sharp averaging estimates in odd dimensions. In addition, the Fourier decay estimate enables us to simply extend the sharp L2−L4 conical extension result in , due to Mockenhaupt and Tao, to the L2−L2(d+1)/(d−1) estimate in all odd dimensions d ≥ 3. We also establish a sharp estimate of the mapping properties of the average operators in the case when the variety S in even dimensions d ≥ 4 contains a d/2-dimensional subspace.
In this paper, we consider the $\mathrm{SL} (2)$ analogue of two well-known theorems about period integrals of automorphic forms on $\mathrm{GL} (2)$: one due to Harder–Langlands–Rapoport about non-vanishing of period integrals on ${\mathrm{GL} }_{2} ({ \mathbb{A} }_{F} )$ of cuspidal automorphic representations on ${\mathrm{GL} }_{2} ({ \mathbb{A} }_{E} )$ where $E$ is a quadratic extension of a number field $F$, and the other due to Waldspurger involving toric periods of automorphic forms on ${\mathrm{GL} }_{2} ({ \mathbb{A} }_{F} )$. In both these cases, now involving $\mathrm{SL} (2)$, we analyze period integrals on global$L$-packets; we prove that under certain conditions, a global automorphic $L$-packet which at each place of a number field has a distinguished representation, contains globally distinguished representations, and further, an automorphic representation which is locally distinguished is globally distinguished.
Let $K$ be a finitely generated extension of $\mathbb {Q}$. We consider the family of $\ell $-adic representations ($\ell $ varies through the set of all prime numbers) of the absolute Galois group of $K$, attached to $\ell $-adic cohomology of a separated scheme of finite type over $K$. We prove that the fields cut out from the algebraic closure of $K$by the kernels of the representations of the family are linearly disjoint over a finite extension of K. This gives a positive answer to a question of Serre.
We characterize nonempty open subsets of the complex plane where the sum $\zeta (s, \alpha )+ {e}^{\pm i\pi s} \hspace{0.167em} \zeta (s, 1- \alpha )$ of Hurwitz zeta functions has no zeros in $s$ for all $0\leq \alpha \leq 1$. This problem is motivated by the construction of fundamental cardinal splines of complex order $s$.
Let ${ \mathbb{F} }_{q} $ be the finite field of characteristic $p$ containing $q= {p}^{r} $ elements and $f(x)= a{x}^{n} + {x}^{m} $, a binomial with coefficients in this field. If some conditions on the greatest common divisor of $n- m$ and $q- 1$ are satisfied then this polynomial does not permute the elements of the field. We prove in particular that if $f(x)= a{x}^{n} + {x}^{m} $ permutes ${ \mathbb{F} }_{p} $, where $n\gt m\gt 0$ and $a\in { \mathbb{F} }_{p}^{\ast } $, then $p- 1\leq (d- 1)d$, where $d= \gcd (n- m, p- 1)$, and that this bound of $p$, in terms of $d$ only, is sharp. We show as well how to obtain in certain cases a permutation binomial over a subfield of ${ \mathbb{F} }_{q} $ from a permutation binomial over ${ \mathbb{F} }_{q} $.
We relate a one-parametric generating function for the squares of Legendre polynomials to an arithmetic hypergeometric series whose parametrisation by a level 7 modular function was recently given by Cooper. By using this modular parametrisation we resolve a subfamily of identities involving $1/ \pi $ which was experimentally observed by Sun.
Let $L(s, E)= {\mathop{\sum }\nolimits}_{n\geq 1} {a}_{n} {n}^{- s} $ be the $L$-series corresponding to an elliptic curve $E$ defined over $ \mathbb{Q} $ and $\mathbf{u} = \mathop{\{ {u}_{m} \} }\nolimits_{m\geq 0} $ be a nondegenerate binary recurrence sequence. We prove that if ${ \mathcal{M} }_{E} $ is the set of $n$ such that ${a}_{n} \not = 0$ and ${ \mathcal{N} }_{E} $ is the subset of $n\in { \mathcal{M} }_{E} $ such that $\vert {a}_{n} \vert = \vert {u}_{m} \vert $ holds with some integer $m\geq 0$, then ${ \mathcal{N} }_{E} $ is of density $0$ as a subset of ${ \mathcal{M} }_{E} $.
We establish a defect relation for algebraically non-degenerate meromorphic maps over generalized p-parabolic manifolds that intersect hypersurfaces in smooth projective algebraic varieties, extending certain results of H. Cartan, L. Ahlfors, W. Stoll, M. Ru, P. M. Wong and Philip P. W. Wong and others.
We find the best asymptotic lower bounds for the coefficient of the leading term of the ${L}_{1} $ norm of the two-dimensional axis-parallel discrepancy that can be obtained by Roth’s orthogonal function method among a large class of test functions. We use methods of combinatorics, probability, and complex and harmonic analysis.
Recently, Pollack and Shevelev [‘On perfect and near-perfect numbers’, J. Number Theory132 (2012), 3037–3046] introduced the concept of near-perfect numbers. A positive integer $n$ is called near-perfect if it is the sum of all but one of its proper divisors. In this paper, we determine all near-perfect numbers with two distinct prime factors.
We prove that when $(a, m)= 1$ and $a$ is a quadratic residue $\hspace{0.167em} \mathrm{mod} \hspace{0.167em} m$, there are infinitely many Carmichael numbers in the arithmetic progression $a\hspace{0.167em} \mathrm{mod} \hspace{0.167em} m$. Indeed the number of them up to $x$ is at least ${x}^{1/ 5} $ when $x$ is large enough (depending on $m$).