To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Ramanujan’s last letter to Hardy concerns the asymptotic properties of modular forms and his ‘mock theta functions’. For the mock theta function $f(q)$, Ramanujan claims that as $q$ approaches an even-order $2k$ root of unity, we have
We prove Ramanujan’s claim as a special case of a more general result. The implied constants in Ramanujan’s claim are not mysterious. They arise in Zagier’s theory of ‘quantum modular forms’. We provide explicit closed expressions for these ‘radial limits’ as values of a ‘quantum’ $q$-hypergeometric function which underlies a new relationship between Dyson’s rank mock theta function and the Andrews–Garvan crank modular form. Along these lines, we show that the Rogers–Fine false $\vartheta $-functions, functions which have not been well understood within the theory of modular forms, specialize to quantum modular forms.
We study the postcritically finite maps within the moduli space of complex polynomial dynamical systems. We characterize rational curves in the moduli space containing an infinite number of postcritically finite maps, in terms of critical orbit relations, in two settings: (1) rational curves that are polynomially parameterized; and (2) cubic polynomials defined by a given fixed point multiplier. We offer a conjecture on the general form of algebraic subvarieties in the moduli space of rational maps on ${ \mathbb{P} }^{1} $ containing a Zariski-dense subset of postcritically finite maps.
Let $\sigma (n)= {\mathop{\sum }\nolimits}_{d\mid n} d$ be the usual sum-of-divisors function. In 1933, Davenport showed that $n/ \sigma (n)$ possesses a continuous distribution function. In other words, the limit $D(u): = \lim _{x\rightarrow \infty }(1/ x){\mathop{\sum }\nolimits}_{n\leq x, n/ \sigma (n)\leq u} 1$ exists for all $u\in [0, 1] $ and varies continuously with $u$. We study the behaviour of the sums ${\mathop{\sum }\nolimits}_{n\leq x, n/ \sigma (n)\leq u} f(n)$ for certain complex-valued multiplicative functions $f$. Our results cover many of the more frequently encountered functions, including $\varphi (n)$, $\tau (n)$ and $\mu (n)$. They also apply to the representation function for sums of two squares, yielding the following analogue of Davenport’s result: for all $u\in [0, 1] $, the limit
Hassett and Tschinkel gave counterexamples to the integral Hodge conjecture among 3-folds over a number field. We work out their method in detail, showing that essentially all known counterexamples to the integral Hodge conjecture over the complex numbers can be made to work over a number field.
Let $k$ be a number field with algebraic closure $ \overline{k} $, and let $S$ be a finite set of primes of $k$ containing all the infinite ones. Let $E/ k$ be an elliptic curve, ${\mit{\Gamma} }_{0} $ be a finitely generated subgroup of $E( \overline{k} )$, and $\mit{\Gamma} \subseteq E( \overline{k} )$ the division group attached to ${\mit{\Gamma} }_{0} $. Fix an effective divisor $D$ of $E$ with support containing either: (i) at least two points whose difference is not torsion; or (ii) at least one point not in $\mit{\Gamma} $. We prove that the set of ‘integral division points on $E( \overline{k} )$’, i.e., the set of points of $\mit{\Gamma} $ which are $S$-integral on $E$ relative to $D, $ is finite. We also prove the ${ \mathbb{G} }_{\mathrm{m} } $-analogue of this theorem, thereby establishing the 1-dimensional case of a general conjecture we pose on integral division points on semi-abelian varieties.
Let $k\geq 2$ and $\Pi (n)= { \mathop{\prod }\nolimits}_{i= 1}^{k} ({a}_{i} n+ {b}_{i} )$ for some integers ${a}_{i} , {b}_{i} $ ($1\leq i\leq k$). Suppose that $\Pi (n)$ has no fixed prime divisors. Weighted sieves have shown for infinitely many integers $n$ that the number of prime factors $\Omega (\Pi (n))$ of $\Pi (n)$ is at most ${r}_{k} $, for some integer ${r}_{k} $ depending only on $k$. We use a new kind of weighted sieve to improve the possible values of ${r}_{k} $ when $k\geq 4$.
In this paper, we construct a generalization of the Kohnen plus space for Hilbert modular forms of half-integral weight. The Kohnen plus space can be characterized by the eigenspace of a certain Hecke operator. It can be also characterized by the behavior of the Fourier coefficients. For example, in the parallel weight case, a modular form of weight $\kappa + (1/ 2)$ with $\xi \mathrm{th} $ Fourier coefficient $c(\xi )$ belongs to the Kohnen plus space if and only if $c(\xi )= 0$ unless $\mathop{(- 1)}\nolimits ^{\kappa } \xi $ is congruent to a square modulo $4$. The Kohnen subspace is isomorphic to a certain space of Jacobi forms. We also prove a generalization of the Kohnen–Zagier formula.
Denote by $ \mathbb{Q} ( \sqrt{- m} )$, with $m$ a square-free positive integer, an imaginary quadratic number field, and by ${ \mathcal{O} }_{- m} $ its ring of integers. The Bianchi groups are the groups ${\mathrm{SL} }_{2} ({ \mathcal{O} }_{- m} )$. In the literature, so far there have been no examples of $p$-torsion in the integral homology of the full Bianchi groups, for $p$ a prime greater than the order of elements of finite order in the Bianchi group, which is at most 6. However, extending the scope of the computations, we can observe examples of torsion in the integral homology of the quotient space, at prime numbers as high as for instance $p= 80\hspace{0.167em} 737$ at the discriminant $- 1747$.
We study the mixing properties of progressions $(x, xg, x{g}^{2} )$, $(x, xg, x{g}^{2} , x{g}^{3} )$ of length three and four in a model class of finite nonabelian groups, namely the special linear groups ${\mathrm{SL} }_{d} (F)$ over a finite field $F$, with $d$ bounded. For length three progressions $(x, xg, x{g}^{2} )$, we establish a strong mixing property (with an error term that decays polynomially in the order $\vert F\vert $ of $F$), which among other things counts the number of such progressions in any given dense subset $A$ of ${\mathrm{SL} }_{d} (F)$, answering a question of Gowers for this class of groups. For length four progressions $(x, xg, x{g}^{2} , x{g}^{3} )$, we establish a partial result in the $d= 2$ case if the shift $g$ is restricted to be diagonalizable over $F$, although in this case we do not recover polynomial bounds in the error term. Our methods include the use of the Cauchy–Schwarz inequality, the abelian Fourier transform, the Lang–Weil bound for the number of points in an algebraic variety over a finite field, some algebraic geometry, and (in the case of length four progressions) the multidimensional Szemerédi theorem.
An $r$-ary necklace (bracelet) of length $n$ is an equivalence class of $r$-colourings of vertices of a regular $n$-gon, taking all rotations (rotations and reflections) as equivalent. A necklace (bracelet) is symmetric if a corresponding colouring is invariant under some reflection. We show that the number of symmetric $r$-ary necklaces (bracelets) of length $n$ is $\frac{1}{2} (r+ 1){r}^{n/ 2} $ if $n$ is even, and ${r}^{(n+ 1)/ 2} $ if $n$ is odd.
In 2007, Andrews and Paule introduced a new class of combinatorial objects called broken $k$-diamond partitions. Recently, Shishuo Fu generalised the notion of broken $k$-diamond partitions to combinatorial objects which he termed $k$ dots bracelet partitions. Fu denoted the number of $k$ dots bracelet partitions of $n$ by ${\mathfrak{B}}_{k} (n)$ and proved several congruences modulo primes and modulo powers of 2. More recently, Radu and Sellers extended the set of congruences proven by Fu by proving three congruences modulo squares of primes for ${\mathfrak{B}}_{5} (n)$, ${\mathfrak{B}}_{7} (n)$ and ${\mathfrak{B}}_{11} (n)$. In this note, we prove some congruences modulo powers of 2 for ${\mathfrak{B}}_{5} (n)$. For example, we find that for all integers $n\geq 0$, ${\mathfrak{B}}_{5} (16n+ 7)\equiv 0\hspace{0.167em} ({\rm mod} \hspace{0.334em} {2}^{5} )$.
Let $(a, b, c)$ be a primitive Pythagorean triple satisfying ${a}^{2} + {b}^{2} = {c}^{2} . $ In 1956, Jeśmanowicz conjectured that for any given positive integer $n$ the only solution of $\mathop{(an)}\nolimits ^{x} + \mathop{(bn)}\nolimits ^{y} = \mathop{(cn)}\nolimits ^{z} $ in positive integers is $x= y= z= 2. $ In this paper, for the primitive Pythagorean triple $(a, b, c)= (4{k}^{2} - 1, 4k, 4{k}^{2} + 1)$ with $k= {2}^{s} $ for some positive integer $s\geq 0$, we prove the conjecture when $n\gt 1$ and certain divisibility conditions are satisfied.
In this paper, we construct several new permutation polynomials over finite fields. First, using the linearised polynomials, we construct the permutation polynomial of the form ${ \mathop{\sum }\nolimits}_{i= 1}^{k} ({L}_{i} (x)+ {\gamma }_{i} ){h}_{i} (B(x))$ over ${\mathbf{F} }_{{q}^{m} } $, where ${L}_{i} (x)$ and $B(x)$ are linearised polynomials. This extends a theorem of Coulter, Henderson and Matthews. Consequently, we generalise a result of Marcos by constructing permutation polynomials of the forms $xh({\lambda }_{j} (x))$ and $xh({\mu }_{j} (x))$, where ${\lambda }_{j} (x)$ is the $j$th elementary symmetric polynomial of $x, {x}^{q} , \ldots , {x}^{{q}^{m- 1} } $ and ${\mu }_{j} (x)= {\mathrm{Tr} }_{{\mathbf{F} }_{{q}^{m} } / {\mathbf{F} }_{q} } ({x}^{j} )$. This answers an open problem raised by Zieve in 2010. Finally, by using the linear translator, we construct the permutation polynomial of the form ${L}_{1} (x)+ {L}_{2} (\gamma )h(f(x))$ over ${\mathbf{F} }_{{q}^{m} } $, which extends a result of Kyureghyan.
We use bounds of mixed character sum to study the distribution of solutions to certain polynomial systems of congruences modulo a prime $p$. In particular, we obtain nontrivial results about the number of solutions in boxes with the side length below ${p}^{1/ 2} $, which seems to be the limit of more general methods based on the bounds of exponential sums along varieties.
We solve the equation ${x}^{a} + {x}^{b} + 1= {y}^{q} $ in positive integers $x, y, a, b$ and $q$ with $a\gt b$ and $q\geq 2$ coprime to $\phi (x)$. This requires a combination of a variety of techniques from effective Diophantine approximation, including lower bounds for linear forms in complex and $p$-adic logarithms, the hypergeometric method of Thue and Siegel applied $p$-adically, local methods, and the algorithmic resolution of Thue equations.
We present an algorithm for computing Borcherds products, which has polynomial runtime. It deals efficiently with the bounds on Fourier expansion indices originating in Weyl chambers. Naive multiplication has exponential runtime due to inefficient handling of these bounds. An implementation of the new algorithm shows that it is also much faster in practice.
In this paper, we present the outcome of vast computer calculations, locating several of the very rare instances of level one cuspidal Bianchi modular forms that are not lifts of elliptic modular forms.
We give an enumeration of all positive definite primitive $ \mathbb{Z} $-lattices in dimension $n\geq 3$ whose genus consists of a single isometry class. This is achieved by using bounds obtained from the Smith–Minkowski–Siegel mass formula to computationally construct the square-free determinant lattices with this property, and then repeatedly calculating pre-images under a mapping first introduced by G. L. Watson.
We hereby complete the classification of single-class genera in dimensions 4 and 5 and correct some mistakes in Watson’s classifications in other dimensions. A list of all single-class primitive $ \mathbb{Z} $-lattices has been compiled and incorporated into the Catalogue of Lattices.