We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Using theta correspondence, we classify the irreducible representations of Mp2n in terms of the irreducible representations of SO2n+1 and determine many properties of this classification. This is a local Shimura correspondence which extends the well-known results of Waldspurger for n=1.
Let X be a Shimura curve of genus zero. In this paper, we first characterize the spaces of automorphic forms on X in terms of Schwarzian differential equations. We then devise a method to compute Hecke operators on these spaces. An interesting by-product of our analysis is the evaluation and other similar identities.
Given an integer $q\ge 2$, a $q$-normal number is an irrational number $\eta $ such that any preassigned sequence of $\ell $ digits occurs in the $q$-ary expansion of $\eta $ at the expected frequency, namely $1/q^\ell $. In a recent paper we constructed a large family of normal numbers, showing in particular that, if $P(n)$ stands for the largest prime factor of $n$, then the number $0.P(2)P(3)P(4)\ldots ,$ the concatenation of the numbers $P(2), P(3), P(4), \ldots ,$ each represented in base $q$, is a $q$-normal number, thereby answering in the affirmative a question raised by Igor Shparlinski. We also showed that $0.P(2+1)P(3+1)P(5+1) \ldots P(p+1)\ldots ,$ where $p$ runs through the sequence of primes, is a $q$-normal number. Here, we show that, given any fixed integer $k\ge 2$, the numbers $0.P_k(2)P_k(3)P_k(4)\ldots $ and $0. P_k(2+1)P_k(3+1)P_k(5+1) \ldots P_k(p+1)\ldots ,$ where $P_k(n)$ stands for the $k{\rm th}$ largest prime factor of $n$, are $q$-normal numbers. These results are part of more general statements.
Given $f(x,y)\in \mathbb Z[x,y]$ with no common components with $x^a-y^b$ and $x^ay^b-1$, we prove that for $p$ sufficiently large, with $C(f)$ exceptions, the solutions $(x,y)\in \overline {\mathbb F}_p\times \overline {\mathbb F}_p$ of $f(x,y)=0$ satisfy $ {\rm ord}(x)+{\rm ord}(y)\gt c (\log p/\log \log p)^{1/2},$ where $c$ is a constant and ${\rm ord}(r)$ is the order of $r$ in the multiplicative group $\overline {\mathbb F}_p^*$. Moreover, for most $p\lt N$, $N$ being a large number, we prove that, with $C(f)$ exceptions, ${\rm ord}(x)+{\rm ord}(y)\gt p^{1/4+\epsilon (p)},$ where $\epsilon (p)$ is an arbitrary function tending to $0$ when $p$ goes to $\infty $.
Given a number field K, we consider families of critically separable rational maps of degree d over K possessing a certain fixed-point and multiplier structure. With suitable notions of isomorphism and good reduction between rational maps in these families, we prove a finiteness theorem which is analogous to Shafarevich’s theorem for elliptic curves. We also define the minimal critical discriminant, a global object which can be viewed as a measure of arithmetic complexity of a rational map. We formulate a conjectural bound on the minimal critical discriminant, which is analogous to Szpiro’s conjecture for elliptic curves, and we prove that a special case of our conjecture implies Szpiro’s conjecture in the semistable case.
In [Gorodnik and Nevo, Counting lattice points, J. Reine Angew. Math. 663 (2012), 127–176] an effective solution of the lattice point counting problem in general domains in semisimple S-algebraic groups and affine symmetric varieties was established. The method relies on the mean ergodic theorem for the action of G on G/Γ, and implies uniformity in counting over families of lattice subgroups admitting a uniform spectral gap. In the present paper we extend some methods developed in [Nevo and Sarnak, Prime and almost prime integral points on principal homogeneous spaces, Acta Math. 205 (2010), 361–402] and use them to establish several useful consequences of this property, including:
(1) effective upper bounds on lifting for solutions of congruences in affine homogeneous varieties;
(2) effective upper bounds on the number of integral points on general subvarieties of semisimple group varieties;
(3) effective lower bounds on the number of almost prime points on symmetric varieties;
(4) effective upper bounds on almost prime solutions of congruences in homogeneous varieties.
It is well known that the regular continued fraction expansion of a quadratic irrational is symmetric about its centre; we refer to this symmetry as horizontal. However, an additional vertical symmetry is exhibited by the continued fraction expansions arising from a family of quadratics known as Schinzel sleepers. This paper provides a method for generating every Schinzel sleeper and investigates their period lengths as well as both their horizontal and vertical symmetries.
We relate a previous result of ours on families of Diophantine equations having only trivial solutions with a result on the approximation of an algebraic number by products of rational numbers and units. We compare this approximation with a Liouville type estimate, and with an estimate arising from a lower bound for a linear combination of logarithms.
Conjecturally, the only real algebraic numbers with bounded partial quotients in their regular continued fraction expansion are rationals and quadratic irrationals. We show that the corresponding statement is not true for complex algebraic numbers in a very strong sense, by constructing, for every even degree $d$, algebraic numbers of degree $d$ that have bounded complex partial quotients in their Hurwitz continued fraction expansion. The Hurwitz expansion is the complex generalization of the nearest integer continued fraction for real numbers. In the case of real numbers the boundedness of regular and nearest integer partial quotients is equivalent.
We study positive integers $n$ such that $n\phi (n)\equiv 2\hspace{0.167em} {\rm mod}\hspace{0.167em} \sigma (n)$, where $\phi (n)$ and $\sigma (n)$ are the Euler function and the sum of divisors function of the positive integer $n$, respectively. We give a general ineffective result showing that there are only finitely many such $n$ whose prime factors belong to a fixed finite set. When this finite set consists only of the two primes $2$ and $3$ we use continued fractions to find all such positive integers $n$.
We describe how the Hardy–Ramanujan–Rademacher formula can be implemented to allow the partition function p(n) to be computed with softly optimal complexity O(n1/2+o(1)) and very little overhead. A new implementation based on these techniques achieves speedups in excess of a factor 500 over previously published software and has been used by the author to calculate p(1019), an exponent twice as large as in previously reported computations. We also investigate performance for multi-evaluation of p(n), where our implementation of the Hardy–Ramanujan–Rademacher formula becomes superior to power series methods on far denser sets of indices than previous implementations. As an application, we determine over 22 billion new congruences for the partition function, extending Weaver’s tabulation of 76 065 congruences. Supplementary materials are available with this article.
For a class of multiplicative integer-valued functions $f$ the distribution of the sequence $f(n)$ in restricted residue classes modulo $N$ is studied. We consider a property weaker than weak uniform distribution and study it for polynomial-like multiplicative functions, in particular for $\varphi (n)$ and $\sigma (n)$.
We describe the period structure of the optimal continued fraction expansion of a quadratic surd, in terms of the period of its nearest square continued fraction expansion. The analysis results in a faster algorithm for determining the optimal continued fraction expansion of a quadratic surd.
Following up on a paper of Balamohan et al. [‘On the behavior of a variant of Hofstadter’s $q$-sequence’, J. Integer Seq.10 (2007)], we analyze a variant of Hofstadter’s $Q$-sequence and show that its frequency sequence is 2-automatic. An automaton computing the sequence is explicitly given.
We construct a family of ideals representing ideal classes of order two in quadratic number fields and show that relations between their ideal classes are governed by certain cyclic quartic extensions of the rationals.
We give continued fraction algorithms for each conjugacy class of triangle Fuchsian group of signature $(3, n, \infty )$, with $n\geq 4$. In particular, we give an explicit form of the group that is a subgroup of the Hilbert modular group of its trace field and provide an interval map that is piecewise linear fractional, given in terms of group elements. Using natural extensions, we find an ergodic invariant measure for the interval map. We also study Diophantine properties of approximation in terms of the continued fractions and show that these continued fractions are appropriate to obtain transcendence results.
We investigate the behaviour of the function $L_{\alpha }(x) = \sum _{n\leq x}\lambda (n)/n^{\alpha }$, where $\lambda (n)$ is the Liouville function and $\alpha $ is a real parameter. The case where $\alpha =0$ was investigated by Pólya; the case $\alpha =1$, by Turán. The question of the existence of sign changes in both of these cases is related to the Riemann hypothesis. Using both analytic and computational methods, we investigate similar problems for the more general family $L_{\alpha }(x)$, where $0\leq \alpha \leq 1$, and their relationship to the Riemann hypothesis and other properties of the zeros of the Riemann zeta function. The case where $\alpha =1/2$is of particular interest.
A number is squareful if the exponent of every prime in its prime factorization is at least two. In this paper, we give, for a fixed $l$, the number of pairs of squareful numbers $n$, $n+l$ such that $n$is less than a given quantity.
We obtain the approximate functional equation for the Rankin–Selberg zeta function in the critical strip and, in particular, on the critical line $\operatorname {Re} s= \frac {1}{2}$.