To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $K_1$ and $K_2$ be complete discrete valuation fields of residue characteristic $p>0$. Let $\pi _{K_1}$ and $\pi _{K_2}$ be their uniformizers. Let $L_1/K_1$ and $L_2/K_2$ be finite extensions with compatible isomorphisms of rings $\mathcal{O}_{K_1}/(\pi _{K_1}^m)\, {\simeq }\,\mathcal{O}_{K_2}/(\pi _{K_2}^m)$ and $\mathcal{O}_{L_1}/(\pi _{K_1}^m)\, {\simeq }\,\mathcal{O}_{L_2}/(\pi _{K_2}^m)$for some positive integer $m$ which is no more than the absolute ramification indices of $K_1$ and $K_2$. Let $j\leq m$ be a positive rational number. In this paper, we prove that the ramification of $L_1/K_1$ is bounded by $j$ if and only if the ramification of $L_2/K_2$ is bounded by $j$. As an application, we prove that the categories of finite separable extensions of $K_1$ and $K_2$ whose ramifications are bounded by $j$ are equivalent to each other, which generalizes a theorem of Deligne to the case of imperfect residue fields. We also show the compatibility of Scholl’s theory of higher fields of norms with the ramification theory of Abbes–Saito, and the integrality of small Artin and Swan conductors of $p$-adic representations with finite local monodromy.
In 2012, Blecher [‘Geometry for totally symmetric plane partitions (TSPPs) with self-conjugate main diagonal’, Util. Math.88 (2012), 223–235] introduced a special class of totally symmetric plane partitions, called $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}1$-shell totally symmetric plane partitions. Let $f(n)$ denote the number of $1$-shell totally symmetric plane partitions of weight $n$. More recently, Hirschhorn and Sellers [‘Arithmetic properties of 1-shell totally symmetric plane partitions’, Bull. Aust. Math. Soc. to appear. Published online 27 September 2013] discovered a number of arithmetic properties satisfied by $f(n)$. In this paper, employing some results due to Cui and Gu [‘Arithmetic properties of $l$-regular partitions’, Adv. Appl. Math.51 (2013), 507–523], and Hirschhorn and Sellers, we prove several new infinite families of congruences modulo 4 and 8 for $1$-shell totally symmetric plane partitions. For example, we find that, for $n\geq 0$ and $\alpha \geq 1$,
We describe algorithms that allow the computation of fundamental domains in the Bruhat–Tits tree for the action of discrete groups arising from quaternion algebras. These algorithms are used to compute spaces of rigid modular forms of arbitrary even weight, and we explain how to evaluate such forms to high precision using overconvergent methods. Finally, these algorithms are applied to the calculation of conjectural equations for the canonical embedding of p-adically uniformizable rational Shimura curves. We conclude with an example in the case of a genus 4 Shimura curve.
Let $Q(N;q,a)$ be the number of squares in the arithmetic progression $qn+a$, for $n=0$,$1,\ldots,N-1$, and let $Q(N)$ be the maximum of $Q(N;q,a)$ over all non-trivial arithmetic progressions $qn + a$. Rudin’s conjecture claims that $Q(N)=O(\sqrt{N})$, and in its stronger form that $Q(N)=Q(N;24,1)$ if $N\ge 6$. We prove the conjecture above for $6\le N\le 52$. We even prove that the arithmetic progression $24n+1$ is the only one, up to equivalence, that contains $Q(N)$ squares for the values of $N$ such that $Q(N)$ increases, for $7\le N\le 52$ ($N=8,13,16,23,27,36,41$and $52$).
We show that if a Barker sequence of length $n>13$ exists, then either n $=$ 3 979 201 339 721749 133 016 171 583 224 100, or $n > 4\cdot 10^{33}$. This improves the lower bound on the length of a long Barker sequence by a factor of nearly $2000$. We also obtain eighteen additional integers $n<10^{50}$ that cannot be ruled out as the length of a Barker sequence, and find more than 237 000 additional candidates $n<10^{100}$. These results are obtained by completing extensive searches for Wieferich prime pairs and using them, together with a number of arithmetic restrictions on $n$, to construct qualifying integers below a given bound. We also report on some updated computations regarding open cases of the circulant Hadamard matrix problem.
We give an asymptotic formula for the number of primes $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}p \le x$ of the form $p = [n_1^{c_1}] = \cdots = [n_d^{c_d}]$, where $c_1, \ldots, c_d$ are greater than 1 but “sufficiently close” to 1. This improves work of E. R. Sirota $(d=2)$ and W. Zhai $(d \ge 3)$.
How many square tiles are needed to tile a circular floor? Tiles are cut to fit the boundary. We give an algorithm for cutting, rotating and re-using the off-cut parts, so that a circular floor requires $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}} \pi R^2 + O(\delta R) + O(R^{2/3}) $ tiles, where $R$ is the radius and $\delta $ is the width of the cutting tool. The algorithm applies to any oval-shaped floor whose boundary has a continuous non-zero radius of curvature. The proof of the error estimate requires methods of analytic number theory.
Let $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}p$ be a prime and $b$ a primitive root of $p^2$. In this paper, we give an explicit formula for the number of times a value in $\{0,1,\ldots,b-1\}$ occurs in the periodic part of the base-$b$ expansion of $1/p^m$. As a consequence of this result, we prove two recent conjectures of Aragón Artacho et al. [‘Walking on real numbers’, Math. Intelligencer35(1) (2013), 42–60] concerning the base-$b$ expansion of Stoneham numbers.
We construct new indecomposable elements in the higher Chow group $CH^2(A,1)$ of a principally polarized Abelian surface over a $p$-adic local field, which generalize an element constructed by Collino [Griffiths’ infinitesimal invariant and higher K-theory on hyperelliptic Jacobians, J. Algebraic Geom. 6 (1997), 393–415]. These elements are constructed using a generalization, due to Birkenhake and Wilhelm [Humbert surfaces and the Kummer plane, Trans. Amer. Math. Soc. 355 (2003), 1819–1841 (electronic)], of a classical construction of Humbert. They can be used to prove a non-Archimedean analogue of the Hodge-${\mathcal{D}}$-conjecture – namely, the surjectivity of the boundary map in the localization sequence – in the case where the Abelian surface has good and ordinary reduction.
As the simplest case of Langlands functoriality, one expects the existence of the symmetric power $S^n(\pi )$, where $\pi $ is an automorphic representation of ${\rm GL}(2,{\mathbb{A}})$ and ${\mathbb{A}}$ denotes the adeles of a number field $F$. This should be an automorphic representation of ${\rm GL}(N,{\mathbb{A}})$ ($N=n+1)$. This is known for $n=2,3$ and $4$. In this paper we show how to deduce the general case from a recent result of J.T. on deformation theory for ‘Schur representations’, combined with expected results on level-raising, as well as another case (a particular tensor product) of Langlands functoriality. Our methods assume $F$ totally real, and the initial representation $\pi $ of classical type.
Let $m$, $a$, $c$ be positive integers with $a\equiv 3, 5~({\rm mod} \hspace{0.334em} 8)$. We show that when $1+ c= {a}^{2} $, the exponential Diophantine equation $\mathop{({m}^{2} + 1)}\nolimits ^{x} + \mathop{(c{m}^{2} - 1)}\nolimits ^{y} = \mathop{(am)}\nolimits ^{z} $ has only the positive integer solution $(x, y, z)= (1, 1, 2)$ under the condition $m\equiv \pm 1~({\rm mod} \hspace{0.334em} a)$, except for the case $(m, a, c)= (1, 3, 8)$, where there are only two solutions: $(x, y, z)= (1, 1, 2), ~(5, 2, 4). $ In particular, when $a= 3$, the equation $\mathop{({m}^{2} + 1)}\nolimits ^{x} + \mathop{(8{m}^{2} - 1)}\nolimits ^{y} = \mathop{(3m)}\nolimits ^{z} $ has only the positive integer solution $(x, y, z)= (1, 1, 2)$, except if $m= 1$. The proof is based on elementary methods and Baker’s method.
In this paper we generalize the work of Harris–Soudry–Taylor and construct the compatible systems of two-dimensional Galois representations attached to cuspidal automorphic representations of cohomological type on ${\rm GL}_2$ over a CM field with a suitable condition on their central characters. We also prove a local-global compatibility statement, up to semi-simplification.
While investigating the Doi–Naganuma lift, Zagier defined integral weight cusp forms $f_D$ which are naturally defined in terms of binary quadratic forms of discriminant $D$. It was later determined by Kohnen and Zagier that the generating function for the function $f_D$ is a half-integral weight cusp form. A natural preimage of $f_D$ under a differential operator at the heart of the theory of harmonic weak Maass forms was determined by the first two authors and Kohnen. In this paper, we consider the modularity properties of the generating function of these preimages. We prove that although the generating function is not itself modular, it can be naturally completed to obtain a half-integral weight modular object.
Suppose that $k_0\geq 3.5\times 10^6$ and $\mathcal{H}=\{h_1,\ldots,h_{k_0}\}$ is admissible. Then, for any $m\geq 1$, the set $\{m(h_j-h_i):\, h_i<h_j\}$ contains at least one Polignac number.
Let $A/K$ be an abelian variety over a function field of characteristic $p>0$ and let $\ell $ be a prime number ($\ell =p$ allowed). We prove the following: the parity of the corank $r_\ell $ of the $\ell $-discrete Selmer group of $A/K$ coincides with the parity of the order at $s=1$ of the Hasse–Weil $L$-function of $A/K$. We also prove the analogous parity result for pure $\ell $-adic sheaves endowed with a nice pairing and in particular for the congruence Zeta function of a projective smooth variety over a finite field. Finally, we prove that the full Birch and Swinnerton-Dyer conjecture is equivalent to the Artin–Tate conjecture.
Computing the value of a high-dimensional integral can often be reduced to the problem of finding the ratio between the measures of two sets. Monte Carlo methods are often used to approximate this ratio, but often one set will be exponentially larger than the other, which leads to an exponentially large variance. A standard method of dealing with this problem is to interpolate between the sets with a sequence of nested sets where neighboring sets have relative measures bounded above by a constant. Choosing such a well-balanced sequence can rarely be done without extensive study of a problem. Here a new approach that automatically obtains such sets is presented. These well-balanced sets allow for faster approximation algorithms for integrals and sums using fewer samples, and better tempering and annealing Markov chains for generating random samples. Applications, such as finding the partition function of the Ising model and normalizing constants for posterior distributions in Bayesian methods, are discussed.
When the branch character has root number $- 1$, the corresponding anticyclotomic Katz $p$-adic $L$-function vanishes identically. For this case, we determine the $\mu $-invariant of the cyclotomic derivative of the Katz $p$-adic $L$-function. The result proves, as an application, the non-vanishing of the anticyclotomic regulator of a self-dual CM modular form with root number $- 1$. The result also plays a crucial role in the recent work of Hsieh on the Eisenstein ideal approach to a one-sided divisibility of the CM main conjecture.
A colouring of the vertices of a regular polygon is symmetric if it is invariant under some reflection of the polygon. We count the number of symmetric $r$-colourings of the vertices of a regular $n$-gon.
Given a prime $p\gt 2$, an integer $h\geq 0$, and a wide open disk $U$ in the weight space $ \mathcal{W} $ of ${\mathbf{GL} }_{2} $, we construct a Hecke–Galois-equivariant morphism ${ \Psi }_{U}^{(h)} $ from the space of analytic families of overconvergent modular symbols over $U$ with bounded slope $\leq h$, to the corresponding space of analytic families of overconvergent modular forms, all with ${ \mathbb{C} }_{p} $-coefficients. We show that there is a finite subset $Z$ of $U$ for which this morphism induces a $p$-adic analytic family of isomorphisms relating overconvergent modular symbols of weight $k$ and slope $\leq h$ to overconvergent modular forms of weight $k+ 2$ and slope $\leq h$.
A natural number $n$ is called abundant if the sum of the proper divisors of $n$ exceeds $n$. For example, $12$ is abundant, since $1+ 2+ 3+ 4+ 6= 16$. In 1929, Bessel-Hagen asked whether or not the set of abundant numbers possesses an asymptotic density. In other words, if $A(x)$ denotes the count of abundant numbers belonging to the interval $[1, x] $, does $A(x)/ x$ tend to a limit? Four years later, Davenport answered Bessel-Hagen’s question in the affirmative. Calling this density $\Delta $, it is now known that $0. 24761\lt \Delta \lt 0. 24766$, so that just under one in four numbers are abundant. We show that $A(x)- \Delta x\lt x/ \mathrm{exp} (\mathop{(\log x)}\nolimits ^{1/ 3} )$ for all large $x$. We also study the behavior of the corresponding error term for the count of so-called $\alpha $-abundant numbers.