To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For a two parameter family of C3 diffeomorphisms having a homoclinic orbit of tangency derived from a horseshoe, the relationship between the measure of the parameter values at which the diffeomorphism (restricted to a certain compact invariant set containing the horseshoe) is not expansive and the Hausdorff dimension of the horseshoe associated to the homoclinic orbit of tangency is investigated. This is a simple application of the Newhouse-Palis-Takens-Yoccoz theory.
This is an expanded version of two lectures given at the conference held at Sydney University in December 1997 on the 50th anniversary of the death of G. H. Hardy.
Suppose we are given a regular symmetric bilinear from on a finite-dimensional vector space V over a commutative field K of characteristic ≠ 2. We want to write given elements of the commutator subgroup ω(V) (of the orthogonal group O(V)) and also of the kernel of the spinorial norm ker(Θ) as (short) products of involutions and as products of commutators
L'objet de cet article est d'étudier un procédé de summation associé á certaines séries. Notant P(n) le plus grand facteur premier d'un entier générique n, nous rappellons les définitions de P-convergence et de P-régularité d'une série, introduites dans [7].
Let K be a nonarchimedean local field, let L be a separable quadratic extension of K, and let h denote a nondegenerate sesquilinear formk on L3. The Bruhat-Tits building associated with SU3(h) is a tree. This is applied to the study of certain groups acting simply transitively on vertices of the building associated with SL(3, F), F = Q3 or F3((X)).
A recurring theme in number theory is that multiplicative and additive properties of integers are more or less independent of each other, the classical result in this vein being Dirichlet's theorem on primes in arithmetic progressions. Since the set of primitive roots to a given modulus is a union of arithmetic progressions, it is natural to study the distribution of prime primitive roots. Results concerning upper bounds for the least prime primitive root to a given modulus q, which we denote by g*(q), have hitherto been of three types. There are conditional bounds: assuming the Generalized Riemann Hypothesis, Shoup [11] has shown that
where ω(n) denotes the number of distinct prime factors of n. There are also upper bounds that hold for almost all moduli q. For instance, one can show [9] that for all but O(Y∈) primes up to Y, we have
for some positive constant C(∈). Finally, one can apply a much stronger result, a uniform upper bound for the least prime in a single arithmetic progression. The best uniform result of this type, due to Heath-Brown [7], implies that . However, there is not at present any stronger unconditional upper bound for g*(q) that holds uniformly for all moduli q. The purpose of this paper is to provide such an upper bound, at least for primitive roots that are “almost prime”.
We investigate conditions which ensure that systems of binomial polynomials with integer coefficients are simultaneously free of large prime factors. In particular, for each positive number ε, we show that there are infinitely many strings of consecutive integers of size about n, free of prime factors exceeding nε, with the length of the strings tending to infinity with speed log log log log n.
The theory of isogeny estimates for Abelian varieties provides ‘additive bounds’ of the form ‘d is at most B’ for the degrees d of certain isogenies. We investigate whether these can be improved to ‘multiplicative bounds’ of the form ‘d divides B’. We find that in general the answer is no (Theorem 1), but that sometimes the answer is yes (Theorem 2). Further we apply the affirmative result to the study of exceptional primes ℒ in connexion with modular Galois representations coming from elliptic curves: we prove that the additive bounds for ℒ of Masser and Wüstholz (1993) can be improved to multiplicative bounds (Theorem 3).
It has been known that mixed automorphic forms arise naturally as holomorphic forms on elliptic varieties and that they include classical automorphic forms as a special case. In this paper, we show how to construct mixed automorphic forms of type (k, l) from elliptic modular forms to give nontrivial examples of mixed automorphic forms.
In [CKR], Chan, Kim and Raghavan determine all universal positive ternary integral quadratic forms over real quadratic number fields. In this context, universal means that the form represents all totally positive elements of the ring of integers of the underlying field. This generalizes the usage of the term introduced by Dickson for the case of the ring of rational integers [D]. In the present paper, we will continue the investigation of quadratic forms with this property, considering positive quaternary forms over totally real number fields. The main goal of the paper is to prove that if E is a totally real number field of odd degree over the field of rational numbers, then there are at most finitely many inequivalent universal positive quaternary quadratic forms over the ring of integers of E. In fact, the stronger result will be proved that this finiteness holds for those forms which represent all totally positive multiples of any fixed totally positive integer. The necessity of the assumption of oddness of the degree of the extension for a general result of this type can be seen from the existence of universal ternary forms over certain real quadratic fields (for example, the sum of three squares over the field ℚ(√5), as first shown by Maass [M]).
Crittenden and Vanden Eynden conjectured that if n arithmetic progressions, each having modulus at least k, include all the integers from 1 to k2n-k+1, then they include all the integers. They proved this for the cases k = 1 and k = 2. We give various necessary conditions for a counterexample to the conjecture; in particular we show that if a counterexample exists for some value of k, then one exists for that k and a value of n less than an explicit function of k.
Let F(X, Y) be an absolutely irreducible polynomial with coefficients in an algebraic number field K. Denote by C the algebraic curve defined by the equation F(X, Y) = 0 and by K[C] the ring of regular functions on Cover K. Assume that there is a unit ϕ in K[C] − K such that 1 − ϕ is also a unit. Then we establish an explicit upper bound for the size of integral solutions of the equation F(X, Y) = 0, defined over K. Using this result we establish improved explicit upper bounds on the size of integral solutions to the equations defining non-singular affine curves of genus zero, with at least three points at ‘infinity’, the elliptic equations and a class of equations containing the Thue curves.
By a fundamental theorem of Brauer every irreducible character of a finite group G can be written in the field Q(εm) of mth roots of unity where m is the exponent of G. Is it always possible to find a matrix representation over its ring Z[εm] of integers? In the present paper it is shown that this holds true provided it is valid for the quasisimple groups. The reduction to such groups relies on a useful extension theorem for integral representations. Iwasawa theory on class groups of cyclotomic fields gives evidence that the answer is at least affirmative when the exponent is replaced by the order, and provides for a general qualitative result.
In this paper, we derive a number of explicit lower bounds for rational approximation to certain cubic irrationalities, proving, for example, that for any non-zero integers p and q. A number of these irrationality measures improve known results, including those for . Some Diophantine consequences are briefly discussed.
Call a set of natural numbers subset-sum-distinct (or SSD) if all pairwise distinct subsets have unequal sums. One wants to construct SSD sets in which the largest element is as small as possible. Given any SSD set, it is easy to construct an SSD set with one more element in which the biggest element is exactly double the biggest element in the original set. For any SSD set, we construct another SSD set with k more elements whose largest element is less than 2k times the largest element in the original set. This claim has been made previously for a different construction, but we show that that claim is false.
In this note we point out that a simple proof of the lower bound of the sets (b, c), and so also of Ξ(b, c), defined in the previous paper [1] can be obtained as a simple application of a general method. By Example 4.6 from [2], if [0, 1] = E0⊃E1⊃ … are sets each of which is a finite union of disjoint closed intervals such that each interval of Ek−1, contains at least mk intervals of Ek which are separated by gaps of lengths at least εk, and if mk≥2 and εk≥εk+1>0, then the dimension of the intersection of Ek is at least
Let Sk, l(Γ, ω, χ) be the space of mixed cusp forms of type (k, l) associated to a Fuchsian group Γ, a holomorphic map ω: ℋ → ℋ of the upper half plane into itself and a homomorphism χ: Γ → SL(2, R) such that ω and χ are equivariant. We construct a map from Sk, l(Γ, ω, χ) to the parabolic cohomology space of Γ with coefficients in some Γ-module and prove that this map is injective.
Let [0;a1(ξ), a2(ξ),…] denote the continued fraction expansion of ξ∈[0, 1]. The problem of estimating the fractional dimension of sets of continued fractions emerged in late twenties in papers by Jarnik [6, 7] and Besicovitch [1] and since then has been addressed by a number of authors (see [2, 4, 5, 8, 9]). In particular, Good [4] proved that the set of all ξ, for which an(ξ)→∞ as n→∞ has the Hausdorff dimension ½ For the set of continued fractions whose expansion terms tend to infinity doubly exponentially the dimension decreases even further. More precisely, let
Hirst [5] showed that dim On the other hand, Moorthy [8] showed that dim where