To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Erdős (see [4]) asked if there are infinitely many integers k which are not a difference or a sum of two powers, i.e., if there are infinitely many positive integers k with k≠|um ± vn| for u, v, m, n ε ℤ. This is certainly a very difficult problem. For example, it is known that the Catalan equation, i.e., the equation um − vn = 1 with uv≠0 and min (m, n)≥2 has only finitely many solutions (u, v, m, n), but there is no other positive integer k≥1 for which it is known that the equation
has only finitely many solution (u, v, m, n) with min (m, n)≥2.
We continue our study of the different representations of an integer n as a sum of two squares initiated in our final paper written with Paul Erdős [1]. We let r(n) denote the number of representations n = a2 + b2 counted in the usual way, that is, with regard to both the order and sign of a and b. We have
where x is the non-principal Dirichlet character (mod 4); moreover, r(n)≥0 if and only if n has no prime factor p ≡ 3 (mod 4) with odd exponent. We define the function b(n) on the sequence of representable numbers as the least possible value of |b|—for example, we have b(13) = 2,b(25) = 0, b(65) = 1—and we write
here and throughout the paper the star denotes that the sum is restricted to the representable integers. The problem considered here is to find an asymptotic formula for this sum, or, less ambitiously, to determine the order of magnitude of the function B(x).
A diophantine system is studied from which is deduced an analogue of van der Corput's A5-process in order to bound analytic exponential sums of the form . The saving has now to be taken to the exponent 1/20 instead of 1/32. Our main application is a “ninth derivative test” for exponential sums which is essential for giving new exponent pairs in [3].
For an indefinite quadratic form f(x1,…,xn) of discriminant d. let P(f) denote the greatest lower bound of the positive values assumed by f for integers x1, …, xn. This paper investigates the values of P3/|d| for nonzero ternary forms of signature −1, and finds the only remaining class of forms with .
Let L be a Galois extension of the number field K. Set n = nK = deg K/ℚ, nL = deg L/ℚ and nL/K = deg L/K. Let I = IL/K denote the group of fractional ideals of K whose prime decomposition contains no prime ideals that ramify in L, and let P = {(α)ΣI: αΣK*, α>0}. Following Hecke [9}, let (λ1, λ2, …, λn − 1) be a basis for the torsion-free characters on P that satisfy λi(α) = 1 (1≤i≤n − 1) for all units α>0 in , the ring of integers of K. Fixing an extension of each λi to a character on I, then λi,(α) (1 ≤i≤n − 1) are defined for all ideals α of K that do not ramify in L. So, for such ideals, we can define . Then the small region of K referred to above is
for 0<l<½ and with the notation that, for any α ∈ ℝ, we set β. where β is the unique real satisyfing .
Fermat gave the first example of a set of four positive integers {a1, a2, a3, a4} with the property that aiaj+1 is a square for 1≤i<j≤4. His example was {1, 3, 8, 120}. Baker and Davenport [1] proved that the example could not be extended to a set of 5 positive integers such that the product of any two of them plus one is a square. Kangasabapathy and Ponnudurai [6], Sansone [9] and Grinstead [4] gave alternative proofs. The construction of such sets originated with Diophantus who studied the problem when the ai are rational numbers. It is conjectured that there do not exist five positive integers whose pairwise products are all one less than the square of an integer. Recently Dujella [3] proved that there do not exist nine such integers. In this note we address the following related problem. Let V denote the set of pure powers, that is, the set of positive integers of the form xk with x and k positive integers and k>1. How large can a set of positive integers A be if aa′ + 1 is in V whenever a and a′ are distinct integers from A? We expect that there is an absolute bound for |A|, the cardinality of A. While we have not been able to establish this result, we have been able to prove that such sets cannot be very dense.
A partition of the positive integer n into distinct parts is a decreasing sequence of positive integers whose sum is n, and the number of such partitions is denoted by Q(n). If we adopt the convention that Q(0) = 1, then we have the generating function
Improved upper and lower bounds of the counting functions of the conceivable additive decomposition sets of the set of primes are established. Suppose that where, ℝ′ differs from the set of primes in finitely many elements only and .
It is shown that the counting functions A(x) of ℐ and B(x) of ℬ for sufficiently large x, satisfy
The purpose of this paper is to show how a sieve method which has had many applications to problems involving rational primes can be modified to derive new results on Gaussian primes (or, more generally, prime ideals in algebraic number fields). One consequence of our main theorem (Theorem 2 below) is the following result on rational primes.
Let (bn) be a sequence of integers, obtained by traversing the rows of Pascal's triangle, as follows: start from the element at the top of the triangle, and at each stage continue from the current element to one of the elements at the next row, either the one immediately to the left of the current element or the one immediately to its right. Consider the distribution of the sequence (bnα) modulo 1 for an irrational α. The main results show that this sequence “often” fails to be uniformly distributed modulo 1, and provide answers to some questions raised by Adams and Petersen.
In this paper we continue the investigation begun in [11]. Let λ1…., λs and μ1, …, μs be real numbers, and define the forms
Further, let τ be a positive real number. Our goal is to determine conditions under which the system of inequalities
has a non-trivial integral solution. As has frequently been the case in work on systems of diophantine inequalities (see, for example, Brüdern and Cook [6] and Cook [7]), we were forced in [11] to impose a condition requiring certain coefficient ratios to be algebraic. A recent paper of Bentkus and Gotze [4] introduced a method for avoiding such a restriction in the study of positivede finite quadratic forms, and these ideas are in fact flexible enough to be applied to other problems. In particular, Freeman [10] was able to adapt the method to obtain an asymptotic lower bound for the number of solutions of a single diophantine inequality, thus finally providing the expected strengthening of a classical theorem of Davenport and Heilbronn [9]. The purpose of the present note is to apply these new ideas to the system of inequalities (1.1).
We consider ineducible Goppa codes of length qm over Fq defined by polynomials of degree r, where q = pt and p, m, r are distinct primes. The number of such codes, inequivalent under coordinate permutations and field automorphisms, is determined.
Using a result on arithmetic progressions, we describe a method for finding the rational h–tuples ρ = (ρl,…,ρh) such that all the multiples mρ (for m coprime to a denominator of ρ) lie in a linear variety modulo Z. We give an application to hypergeometric functions.
The set of integers represented as the sum of three cubes of natural numbers is widely expected to have positive density (see Hooley [7] for a discussion of this topic). Over the past six decades or so, the pursuit of an acceptable approximation to the latter statement has spawned much of the progress achieved in the theory of the Hardy-Littlewood method, so far as its application to Waring's problem for smaller exponents is concerned. Write R(N) for the number of positive integers not exceeding N which are the sum of three cubes of natural numbers.
§1. Introduction. In 1946, Davenport and Heilbronn [9] proved a result which opened up the study of Diophantine inequalities. Suppose that Q(x) is a diagonal quadratic form with non-zero real coefficients in s variables. We write
In this paper we prove that every positive definite n-ary integral quadratic form with 12 < n < 13 (respectively 14 ≦ n ≤ 20) that can be represented by a sum of squares of integral linear forms is represented by a sum of 2 · 3n + n + 6 (respectively 3 · 4n + n + 3) squares. We also prove that every positive definite 7-ary integral quadratic form that can be represented by a sum of squares is represented by a sum of 25 squares.