We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we derive a number of explicit lower bounds for rational approximation to certain cubic irrationalities, proving, for example, that for any non-zero integers p and q. A number of these irrationality measures improve known results, including those for . Some Diophantine consequences are briefly discussed.
Call a set of natural numbers subset-sum-distinct (or SSD) if all pairwise distinct subsets have unequal sums. One wants to construct SSD sets in which the largest element is as small as possible. Given any SSD set, it is easy to construct an SSD set with one more element in which the biggest element is exactly double the biggest element in the original set. For any SSD set, we construct another SSD set with k more elements whose largest element is less than 2k times the largest element in the original set. This claim has been made previously for a different construction, but we show that that claim is false.
In this note we point out that a simple proof of the lower bound of the sets (b, c), and so also of Ξ(b, c), defined in the previous paper [1] can be obtained as a simple application of a general method. By Example 4.6 from [2], if [0, 1] = E0⊃E1⊃ … are sets each of which is a finite union of disjoint closed intervals such that each interval of Ek−1, contains at least mk intervals of Ek which are separated by gaps of lengths at least εk, and if mk≥2 and εk≥εk+1>0, then the dimension of the intersection of Ek is at least
Let Sk, l(Γ, ω, χ) be the space of mixed cusp forms of type (k, l) associated to a Fuchsian group Γ, a holomorphic map ω: ℋ → ℋ of the upper half plane into itself and a homomorphism χ: Γ → SL(2, R) such that ω and χ are equivariant. We construct a map from Sk, l(Γ, ω, χ) to the parabolic cohomology space of Γ with coefficients in some Γ-module and prove that this map is injective.
Let [0;a1(ξ), a2(ξ),…] denote the continued fraction expansion of ξ∈[0, 1]. The problem of estimating the fractional dimension of sets of continued fractions emerged in late twenties in papers by Jarnik [6, 7] and Besicovitch [1] and since then has been addressed by a number of authors (see [2, 4, 5, 8, 9]). In particular, Good [4] proved that the set of all ξ, for which an(ξ)→∞ as n→∞ has the Hausdorff dimension ½ For the set of continued fractions whose expansion terms tend to infinity doubly exponentially the dimension decreases even further. More precisely, let
Hirst [5] showed that dim On the other hand, Moorthy [8] showed that dim where
In this paper we investigate the solutions in integers x, y, z, X, Y, Z of the system
where P is a real number that may be taken to be arbitrarily large, and the (fixed) integer exponent h satisfies h≥4. The system has 6P3 + O(P2) “trivial” solutions in which x, y, z are a permutation of X, Y, Z. Our result implies that the number of non-trivial solutions is at most o(P3), so that the total number of solutions is asymptotic to 6P3.
Let (Sn)n = 1,2,… be the strictly increasing sequence of those natural numbers that can be represented as the sum of three cubes of positive integers. The estimate
is easily proved as follows: Let x1 be the largest natural number with Then This procedure is iterated by choosing x2 and then x3 as the largest natural numbers satisfying and Thus Since this implies (1).
Recently, it has been shown that tight or almost tight upper bounds for the discrepancy of many geometrically denned set systems can be derived from simple combinatorial parameters of these set systems. Namely, if the primal shatter function of a set system ℛ on an n-point set X is bounded by const. md, then the discrepancy disc (ℛ) = O(n(d−1)/2d) (which is known to be tight), and if the dual shatter function is bounded by const. md, then disc We prove that for d = 2, 3, the latter bound also cannot be improved in general. We also show that bounds on the shatter functions alone do not imply the average (L1)-discrepancy to be much smaller than the maximum discrepancy: this contrasts results of Beck and Chen for certain geometric cases. In the proof we give a construction of a certain asymptotically extremal bipartite graph, which may be of independent interest.
We generalize dual reductive pairs by using reductive groups that are not necessarily subgroups of symplectic groups and construct the corresponding theta-series liftings for certain types of automorphic forms. We also discuss connections of such generalized theta-series liftings with families of abelian varieties parametrized by an arithmetic variety.
On Waring's problem for cubes, it is conjectured that every sufficiently large natural number can be represented as a sum of four cubes of natural numbers. Denoting by E(N) the number of the natural numbers up to N that cannot be written as a sum of four cubes, we may express the conjecture as E(N)≪1.
The shape of large densest sphere packings in a lattice L ⊂ Ed (d ≥ 2), measured by parametric density, tends asymptotically not to a sphere but to a polytope, the Wulff-shape, which depends only on L and the parameter. This is proved via the density deviation, derived from parametric density and diophantine approximation. In crystallography the Wulff-shape describes the shape of ideal crystals. So the result further indicates that the shape of ideal crystals can be described by dense lattice packings of spheres in E3.
In 1973, Montgomery [12] introduced, in order to study the vertical distribution of the zeros of the Riemann zeta function, the pair correlation function
where w(u) = 4/(4 + u2) and γjj = 1, 2, run over the imaginary part of the nontrivial zeros of ζ(s). It is easy to see that, for T → ∞,
uniformly in X, and Montgomery [12], see also Goldston-Montgomery [7], proved that under the Riemann Hypothesis (RH)
uniformly for X ≤ T ≤ XA, for any fixed A > 1. He also conjectured, under RH, that (1) holds uniformly for Xε ≤ T ≤ X, for every fixed ε > 0. We denote by MC the above conjecture.
The distribution of squarefree binomial coefficients. For many years, Paul Erdős has asked intriguing questions concerning the prime divisors of binomial coefficients, and the powers to which they appear. It is evident that, if k is not too small, then must be highly composite in that it contains many prime factors and often to high powers. It is therefore of interest to enquire as to how infrequently is squarefree. One well-known conjecture, due to Erdős, is that is not squarefree once n > 4. Sarközy [Sz] proved this for sufficiently large n but here we return to and solve the original question.
Recently Bombieri and Sperber have jointly created a new construction for estimating exponential sums on quasiprojective varieties over finite fields. In this paper we apply their construction to estimate hybrid exponential sums on quasiprojective varieties over finite fields. In doing this we utilize a result of Aldolphson and Sperber concerning the degree of the L-function associated with a certain exponential sum.
This paper depends on results of Baranovskii [1], [2]. The covering radius R(L) of an n-dimensional lattice L is the radius of smallest balls with centres at points of L which cover the whole space spanned by L. R(L) is closely related to minimal vectors of classes of the quotient . The convex hull of all minimal vectors of a class Q is a Delaunay polytope P(Q) of dimension ≤, dimension of L. Let be a maximal squared radius of P(Q) of dimension n (of dimension less than n, respectively). If , then . This is the case in the well-known Barnes-Wall and Leech lattices. Otherwise, . This is a refinement of a result of Norton ([3], Ch. 22).
In the first part of the paper we show that the L2-discrepancy with respect to squares is of the same order of magnitude as the usual L2- discrepancy for point distributions in the K-dimensional torus. In the second part we adapt this method to obtain a generalization of Roth's [7] lower bound (log N)(k-1)/2 (for the usual discrepancy) to the discrepancy with respect to homothetic simple convex poly topes.